ED 052 482

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
REPORT NO
BUREAU ¥XO
PUR DATE
GRANT

NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUNME
24 CG GN6 U990

Tayloi, Ann

GLURP-Generalized Language for Understanding and
Respending to People. Inforaation System for
Vocational Pecisions.

Rarvard Yniv., Cambridge, Miss. Graduate Schcol of
Edncation.

Ottice of ducation (DHEW), Washington, C.C.
PR-~29

BR-6-1819

Jan 70

OEG-1-6-061819--2240

137p.

EVRS Prirce "F-~$0.,65% HC-$6.58

Career Choice, *Computer Assisted Instruction,
Educational Technology, *Intormation Systenms, *Man
Machine Sysiens, +¥Occupational suidance, *Programing
Languages, Programing Problems

GLYURP (Generalized Language for Understanding and

Responding to People) is a mid-point version ot a script-writing

computer languaqe which had been intendecd by the developers of the
Incformation System or Vocational Decisions (ISVD). Because ISVD
aized at alloving the student uscr to control the order and gquaantity
of data tlovw (in an Enqlish language coiitext) to the console certain
requireeents vere demanced ot the author lanjuage. This paper
describes: (1) the current status of [SVYD's author language {(GLURP};
(2} its adaptation to nmachines other than the RC\ Spectra or IBN 350
on which it can presently be used; aad {3) some system and language
probleas which were not solved due to insufficient time. Other
coxputer languajes used in constructing GLURP are discusscd in the
appendices. (TL)

ERIC

Aruitoxt provided by Eic:

EDU52482

-

3

- 006 490
N

m.
S

Aruitoxt provided by Eic:

=

INFORMATION SYSTEM FOR VOCATIONAL DECISIONS

Project Report No. 29

GLURP =-- LENERALIZED LANGUAGE for UNDERSTANDING

anu RESPONDING to PEOPLE

Ann laylor

This paper was supported in part by Grant No.

OEG-1-6-061819-2240

of the United States Off:.ce of Education under teras of the

Yocational Ejucation A:t of 1963,

Graduate School of Education
Harverd University

January 1970

4

7S DEFARTMENTCF HEALTH
EDUCATION A WELPARE
OFF:CEOF EDUCATION
T8 DOCUAEN' HAS PEEN AEFEN
CUCED E8CTLY A EGRCEE™ ¢£ 'y
YRR FEESTN LA (8 ANAT B s
AN ICEANLELILE o o IR AN
NS BLTET DA N rECERtRE g
EECEEQUNT (P r Al CHETE £ g2
[R A R

GLURP -- GENERALIZED LANCUAGE for UNLERSTANDING

and RESPONDING to FEOPLE

ED052482

GLURP {5 a mid-point version of what we set nut to accomplish as
a computer language for social science/educational apy.ications of the com-
puter. The aim of the ISVD proiect has been to allow the student user to
control the order and quantity of data flow to the console, but still in
an English language context. The 1SVD author language, then, must be able
to accept student input, convert ic into inrormation to the script, which
then sernds to the student appropriate data from the data base for the sru-
dent to couvert Into information. This is different from the usual CAT
language, in that the student 18 never ''right" or 'wrong" -- inderd, his
state should be described as 'curfous' or "fascinated". Al3o, other 74
languages have their data preset in the text, fullowing & praset ¢:der as
in normal claisroom presentation (uit without a questlon pariod). There
ic usually no provi~?»n for random access of data. Most teaching languages,
then, are veally le.curing or drill-and-practice languages.

In our investigations we discovered twu langrages, each of which
was capable of cne of our main objectives. ELIZA (see Appendix B) empha-
sized the understanding by the script of what the student was tryinz Lo
say. TRAC* (Appendix A) emphasized the ability to convert English input
into information veable by the script. Comdining these two languages with
a random access data roitire (HASM/DASM) gave us most of the langvage cep-
ebilities required, but did not suggest a homogeneous formet for the suthor
language.

W.at we have accomplished in our allotted time, then, tould be
carvied on In ona of two ways: the system could be (aken as is (ot with
minor interface modifications) to be used cn an FCA Spectra or IBM 160
machine, or the whole thing could be re-written for anothar nachine. In
the second case, I would strengly suggest chat the heirs of the system
etudy what we have done and make an attempt to evolve the lauguage and
data accegs routines closer te the ideal before starting the csiing.

The rest of this paper, accordingly, will be in three parts:

1) a description of GLURP as it exists, 2) a description of how to adapt f{t
to another BAL-oriented machine, and 3) some problems we would have attempted

to solve had we had rore time.

- ———— ——

*
IRAC §s5 the trademark of Rockford Pesearch Institute, Inc., Cambridge,

Q Massachusetts, for its string handling language.
Hﬂi:ﬁﬁﬂ T

.

O

ERIC

Aruitoxt provided by Eic:

-2-

I. A DESCRIPTION OF GLUR® AS IT NOW FXISTS

The basic control mechanism for GLUR? {s the SCRIPT, which is,
in well-written scripts, controlled by tie student at the console. All
daca, ifhcluding scripts, are accessed by specifying the name of the file,
the name of the record within that file, and the name of the attribute
within the record. All of these unames look rather like English in the
hope that key words used by the student may be used directly to seek in-
formation from the disc.

A script rasides oa the diec in one ~f the two script files
(SCRIPTSA and SCRIFTSB) and is accessible by name through the HASM reitire.
The script names ure reccrd nam>s to HASM and the step numbers are atctri-
bute names.

In the ex1isting system, all script names have no embedded blanks
because of the way the TRAC "pop-top" function works, and the fact that
PT is used extensively in linking from one script to anc:her. More about
that ia section III.

GLURF sets things in mation by caliing for the first step of the
LOGIN script. This sciript ie responsible foer identifying the student and
tor cnlling HASM to bring his pursonal files into play. See document on
sciipt network for further description of script control.

The script is read ’n, step by step, interpreted and executed.
Some steps will cause the seguentin) interpretation stepsr to bc altered and
control restarted with a new script and/or step.

Each cstep consists of sne of the two typuvs of GLURP statements,

a IRAC statement or a non-IRAC statesent. A TRAC statement (vhich begins
with a "#") may lead to a very coimplex set of operations, whereac a non-
TRAC statement (not begir:ing with a "#") usuelly refers to a rather simple
sort of operation. The exception to this is the non-TRAC "DECOMP" state-
ment which is actually a blerd of ELIZA and TRAC,

1. A BRIEF DESCRIPTION OF TPRAC

A basic unit of TRAC §s the "YUNCTION". A function describes
scmething the machine should do. A function can be recognized as something
thai begins with the two characters

#(

and ends with the character

)
The function is broken dcwn into parts called "ARGUMENTS", which are sep-
arated by colous. Here i{s a TRAC function

(PS:HELLO THERE)
It has two arguments: P35 and HELLO THERE.
The argument of a function may be or may contain yet another TRAC function,
which {n turn mey contatir. & TRAC function, etc. A combiuation or series
of functions or thiigs to do is called a "PROCEDURE"., A script is a GLURP
procedura, consisting of several steps of GLURP statements. This is a TRAC
procedure

#(P&: 6 (MESSAGE)) #(G0:010.00)
The waords "STRINC'™ and "LIST" are used often in TRAC and GLURP. A string
is any sequence of characters, be it a sentence, a word, a paragreph, a
function, or a GLURP »tat~ment. A list is a series of words put together,
separated by blanks (a "VORD 'IST") such as

doctor lawyex indlan chief
ot by ~omunas (a "RULE LIST"), such as

0 7ES 0, O OKAY 0, O SUPPOSE SO O
Lei: us leave it for now that suci: things exist; the use of them will become
clear as we progresa,

When deaiing with a computer, we keep data in tvo types of storage
areus, Most of our data is on the disc. [t tekes a certain :mount of effort
for the machine to get materiai off the disc, so a3 much as pogsibls 1t 1likes
to keep things closer at hand in "core storage." Before the data ~an be
used {t muat be brought into cotre siorage. W¥a'll talk about that later.
But ro matter whrre the data is stored, the script vriter must pu% it there
explicitly before he tries to use ft, or krow that acmeone elsu has put it
there for him. You cannot use a string that is not there. Let's go back to
cur firit example.

#(PS:HELLO THERE)

If we look up the PS function in Appendix C, we find that {t is
the "print string' functfon. It has two arguments, and will print the sec-
ond one on the teletype (or CRT, whichever you have). All the data we
need, in this case, is right in the functisn. Suppose, however, that you

O

ERIC 1

Aruitoxt provided by Eic:

ERIC

O

Aruitoxt provided by Eic:

-t

had a big long paragraph of material to print, and that you wanted ‘o refer
to it in several different places. Instead of writing it all out .ach time
in A PS function, {t would be nice to tell the machine what the big long
message 1s, and then tell the PS functinn to use that previously defined
string. We do it this way:

#(DS:MESSAGE:BIG LONG MESSAGE)
This stores away in core storage a string by the name of MESSAGE whose con-
tents is tne BIG LONG MESSAGE. (see Appendix C, DS funcifon) Now wa can
refer to this string ot any time with the nctation

(MESSAGE)
This should be read "the contents of string MESSAGE." As menticned above,
tiie argument of a function may in turn be a function, so we may write

#(PS:# (MESSAGE))
which may be read "print the contents uf the string MESSAGE." The result of
usirg this function would be to have the text

BIG LONG MECSAGE
typed on the teletype (cr CRT).

Note that by stating a string pame rather than a TRAC funciiou
rame as the first argument of a function, we can call & string out of core
storage. This mrans, of course, that we must not give a strir, the same
name as a function name., Ve defined a functinn ar a statement of something
the machine should do. A function may do any combination of these types
of things:

1. Put somothing or get something from external sources (disc

or conscle).

2. Change or manipulate strings in core storage, and/or

3. Perfurm a calculativn which results in an answer.

If a function performs a calculation which results in an answer,
it is called a "VALUED"' function; otherwise, it is called an "UNVALUED"
function. Wher a function has a value, it replaces itself with that value
in the svaluation of a procedure.

For example, the functica
(MESSAGF.)

in the precedure
#(PS:#(MESSAGY))

(o

O

ERIC

Aruitoxt provided by Eic:

-5-

has the value

BIG LONG MESSAGE
then the procedure is belrg used, then, this function replaces itself in
the procedure and leaves

#(PS:BIG LONG MESSAGE)
The funciion 18 re-evaluated {n respect to the surrounding or "deferred"
function, and the PS function is carried out. None of the functions we
used, however, changes core storage in any way, so the string MESSAGE re-
mains unchuaged in core, If a functicy 18 unvalued, it does its designated
task and then disappears from the procedure heing evaluated. To understand
thia better, we reed to understand something of how the TRAC interpreter
behaves,

In effect, what happens {s that TRAC scans a procedure from left

to right until 1t finds a right paren. At this point it scans backwards
to the last #(configuration and analyzes the function found within, The
value of the analyted function, {f any, replaces the function In the pro-
cedure to analyze any further functions. If argument 1, the function name
or string name, does rot exist, nothing happens and the function is erased.
1f the entire procedure is scanned ard no TRAC fuactions remain, a new
procedure is brought in from the rext script ster and the process begins
all over again, For example, let's take the procedure

#(DS:COUNT:1)# (PS: # {AD: #(COUNT):1))
The interpreter scans slong unti) it finds the first right paren. It then
proceeds to evaluate tie fuaction

#(DS:COUN.:Y)
When it is finished with this function, a string has been set up in cote
storage with the name COUNT and contents 1. According to the description
in Appendix C, DS is an unvalued fuanction, so It now erases itself from the
procedure leaving

#(PS:#(AD: € (COUNT) 1)
The first right paren this time leaves us just after the word COUNT, so
the interpreter picks out the funicion

(COUNT)
This function replacer ftself with the contents of string COUNT in the

O

ERIC

Aruitoxt provided by Eic:

procedure, leaving

#{pS:#(AD:1:1})
Further scan leads us to the function

#(AD:1:1)
This function replaces itself with the value 2. Note that none of the
functions used change core storage, so we sti)l have ttored a string called
COUNT with contents 1. Now we have left the procedura

#(PS:2)
and "2" {g printed on the teletype (CRT).

Sometimes it 13 handy to store some strings that are TRAC functions

or procedures in themselves. Bu: 1f we were to try to do so in this fashion

(DS:ROUTINE:#(PS:HELLO THERE))
we zncw from the above example that this wovld print HELLO THERE oa the tele-
type ind Jefine a string ROUTINE with no contents at all. For this reason
TRAC uses parens as protectors for things it doesn't want to have analyzed.
We would define the string this way

#(DS:ROUTINE: (# (PS:HELLO THERE)})
The scanning routine finds the left pariu not preceded by a #. It now skips
to its matching right paren, saving but not analyzing the material In betweer.
In this process, it strips out the protecting parens. When we call back our
string with the f'action

(ROUTINE)
the function is replaced by its value

#(PS:HELLO THERE)
which (s further scanned to produce the message HELLO THERE on the teletype.
But now suppose that we wanted to print out the contents of the string
ROUYINE. 1f we tried using the procedure

#F(PS:#(ROLTINE))
we would receive the message

HEILO THERE
Again, TRAC has provided for this and has a way of saying “evaluate this
function, but i1f the value of the function is fn turn a function, do not
evaluate it further." We do this by tvping

#(PS:#2(ROLTINE))

-7-

The strirg ROUTINE i8s evaluated once to produce

¢#(PS:¢#(PS:HELLO THERE))
but, siice we uped the function sign ##, does not evaluate it further and
goes directly to its surrounding function PS, The messape on the teletyjpe
is now

#(PS:HELLO THERE)
which i{s the contents of the string ROUTINE.

In Appendix C, the various argu.ents of a function are described

by various letters, depending on what type of thing the argument must be,

The first argument of a function is slways a two-letter function code, telling

what the functioa fs, and should be written just as it appears in the des-

cripticn. The reet of the arguments should be interpreted as follows:

X means the argurent must be a string. This, of course, can be represented
by a velued TRAC function or prccedure. This may also be no characters
at all {f this is logical at the time.

N represents the name of a string. Again, this ran be represeted completely

or partly by a valued TRAC function.
D vrepreaents a aumber, itith no alphabetics or decimal point included. =&
negative number is preceded by a minus sign.
represents & Boolean string. See BA function in Appendix C.
represents either o string, as {n X, or a TRAC procedure or routine
surrounded by patens. In the ISVD system it can also be a step number
of the current script, preceded by an asterisk, as {in
(EQ: # (NAME) : KENRY:4100,00:4200.00)
According to Appendix C, this says ''if the string NAME contains the word
HENRY, go to atatement 100.00, otherwise go to statsment 200,00." This
could also be written
(EQ: # (NAME) - HENRY: (#(G0:100.00)) : (#(G0:200.00)))
wvhich reads exactly the same. Note the parens around Z arguments that are
TRAC functions, en. remewmber what would happen if those parens were not
there. It is possidle, huwever, that the Z could be a simple string
F(AD:#(EQ: #{COUNT):3:1:2):1)
This says, if the contents of COUNT is 3 add L and 1, othervise add 2 and
1.

O

ERIC

Aruitoxt provided by Eic:

e

O

ERIC

Aruitoxt provided by Eic:

2, A STUDENT COMMAND LANGUAGE

Pincus, Yee and Little proposed several additions to the saript
software. These serve the functions of (1) giving the students control
over the direction of the script flow, and (2) makicg these an automatic
vart of the KEYBCARD statewent, so that each script does rot have to check
for {i.e occurrence of these student commands.

/s the student enters the system, he is given an 1N/ RODUCTION
seript (ac contrasted to the ORIENTATION script) that explairs the me:han-
ical use of the macliine, and also certain commards he can use at any time
to change the subject, ask questions of the data base, etc. The student
commands ara:

@§Igg This causes the script to stop whatever it ie doing and to return
to the latest named STOP linkage point. Script writers should anticipate
the use of this command by inserting at appropriate points the place a
student should return to .f he should suddenly break cut of a script in
this maurer, Usually, a stop return point will be a point where he is
given a cholce of several different activities. He may then make a chofce,
try that activity for a while, then say &3TOP because hn would rather choose
samething else to do.

@QUIT This causes immedfate transfer to the QUIT script, which asks him
if he wants a summary of his activities to date. He is given a summary or
not, as he choos«s, and the machine prepares for a new user.

@CATA Sends control directly tv a script giving him direct access to any
dita base. At this point he may ask for specific pleces of data at will
uvntil he types (STOP, whea he is returned to the CRT statement immediately
preceding the KEYBOARD statement at which he typed @DATA. Nete that this
$s a non-typical use cf @STOP, in that the author need not worry about this
oncurrence . . ., the GLURP {ntevpreter will take care of {t automatically.
@HELP 1! the student doesn't understand a question or for some other rea-
son doesn't know what to respcnd, he types @HELP, whereupon he §3 sent to

a section of the script which further explaing what the author was trying
to say. It is the responsibility of the script writer to specify, on the
KEYBOARD statement, where the student is to be sent {f he types CHELP, If
no help has been specified, the student is told 'No hint has been provided.

Avnswer the best that you can."

O

QSUIMARY Sends the student to the SUMMARY script, where he is given a
surmary of h.- activities to dsate. As in GDATA, when he types @STOP, he
18 retrrned to the CRT statement frmediately preceding the KEYBCARD state-
ment at which he typed @SUMMARY.

3. WRITING A SCRIPT IN GLURP

In GLURP step numbers have the format XXX.XX, where the X's are
digits. The maximum atep is 999,99. I suggest that scripts be initially
written with gaps between the step numbers to allow for future exparsion
of the scripts. since these numbers must te in order of ficreasing value.

A script, then, coasists of a serifes of GLYRP stctewents, each
beginning with a statement number, and ecach consisting of either a GLURT
statement or a TRAC statement. Note, howgver, that these two &t¢ teme'.t
types cannot La mixed in one etatemeni. In any case, o staterent cannot
be longer tham 255 characters.

There are currently four GLURP functions that are non-TRAC:

1. CRT or CRT+ or CRTC

2. KEYBOARD
3. DECOMP
4. GOTO

I hear cries about the Lard copy or printer device. Unfortunately,
this will be used in the follewing way: If the student wants a printout
of the current centents of the CRT, he pushes the "hard copy" but*on and
waits till the priuting is finish?d before he continues with the interaction.
Foruatting characters for the CRT (see CRT description) will have no effect
on the teletype, . . . an importsnt consideration if you are planiaing the
transfer of » table, formatted 1ist, blinking characters, etc.

This fa not the only button the student will “e faced with: 1in
order to have 2 slide showi, rot only wust there be a SLIDE command in a
CRT statement, but tha student must be {nstructed to push the ''run' button
in order Lo get ft to show. There was somwe indication trom the Sanders
recple that they could rig things so that the computer could push the "run"
button, but that fsn't the way it is now.

Here ure dedcriptions of the GLURP atatements in full.
CRT or CRTI+ or CRIC
CRT causes the following text to be displayed with carriage returns inserted

ERIC

Aruitoxt provided by Eic:

1

[E

-10-

as close to the end of the maximum sized line as possible. The text wiil
start in the uppe. left hand corner of the screen, and all previcusly dis-
played material will be erased. The text may not contain the special char-
acters > or \ except in the case of a alide command, and it rust be 250
characters or less.
CRT+ causes the following text to be added to whatever is currently o.. the
screen, starting with the next available line. Again, the carriage returns
are automatically inserted at the erd of the 64 charactar line. The max~
imum ccmbined lengeth of the characters of the screer ig 768 characters, in-
eluding any conourvent slide commands.
CRTC causes material to be added to whatever is on the screen beginning at
the next available space +1. _
The Sanders 72¢ formatting characters are nmultipunched in one pos-
frion:
X'oA' (home) causes the following text to start in the upper ‘left hand
corner of the screen. Previously dirplayed text i8 NOT erased.
X'B9’ (clear, or initinte) eruset the contents of the screen and acts
as a ﬁ character.
X'5F’ (carriage return) causes the following text to appear on the next
available line, starting with the leit-most character.
¥'4A" (horizontal tab) causes four blanks.
X'4r! (vertical tab) causes the following text tv starz four liaes down
from its current position anu at the left-rost positlon of that line.
X'sF’ (start blink) causes the following characters, up to the clear blink
format character, to blink as they are displayed. This {s a good
substitute for auderlining.
X'7¢' {clear blink) causes the €ollowing text nut Lo blirk.
N.B. There ig no timer aveoctated with the CRT. Thig meane that if
the CRT gtaterents are preaented in a series, the text will flash
by at faster-than-readarle speed. For thie reaechn, each CRT or eeriea
of CRT and ite assveinted CRT+'s ruet be followed by a ASYBOAFD state-
rent. The script will then pause until the student has finished
reading the message and pushed "send block.”
The slide command s actually e specialited CRT+ command. The characters

that specify the slide sequence are sent to the CRT “here it is saved but

O

RIC

s] 1

-11-

not displayed. (It is printed in the case that the student requests hard
copy, however!) The student must then be told to push the "run" button to
get the slide projector to scarch the screen for its command. The slide
commands cause the specified slide(s) to be shown for the specified length
of tiie. The exact format for a slide designation is

\SPX/MS5/NNN/NNN///*
where X is the projector number (1 or 2), M is the number of minutes the
slide should be shown, SS is the number of seconds the slide should be shown,
NNN is a slide number. The asterisk marks the end of the command. If MSS
ic 000, the slfde wiil be shown until another slide replaces it, or the
slide proiector 18 turned -+ . The projector is turned off with the instruction

NSox/111*
If a series of slidas are to be shown, say slides 5 through 10, for 5 seconds
each; the instruction wauld be

\'$8X/005/005/010///*
After this series is shown, the projector will look for enother command with-
out the student pushing the ''run” button.
If one onlv slide 18 to be shown, say slide 7 for 1 minute and 3 seconds, the
fnstruction would be

\spx/103/907////*
If there is some text that you wish displayed only while this particular
slide is being shown, the format is

\S@$x/103/007////*(THIS IS JOHNNY BEING A DOCIOP)
The text must be included in the maximum number of characters thit can be
displayed at once, but it wili actually be displaved only when slide 7 {s
being displayed.
KEYBOARD

Prints three asterisks in the student respons2 arca (block 1, last

256 positions of the CRT) and reads the student response. All responses
ure automatically chacked for stuient commands (leading @) sr TKAC (leading
#). A branch poirt on the KEYBOARD statement

KEYBOAED : XXX . XX
indicates which statement the student should be transferred to {f he types
QUELP, If the branch point 1f aitted, and the student types QHILP, he
vill be informed that no hint hae been provided.

O

.

O

ERIC

Aruitoxt provided by Eic:

-12-~

DECOMP rule list:stepno list

Analyzes the last student response. This {s probably best explained
by example. Let's s : you were interested in finding out {f, at the last
KEYBOARD statement, the student answered "yes''. You would write

DECOMP:YES:004.00
This says, if the last response was exactly "yes', transfer to statement
004.00, othe:cwise go %o the next statement. The above example has a rule 1list
with one {tem in it ~-- YES, Usually, though, you would be more interested
in whether or no. the student used the word "yes'" with accompanyirg text.
In this cas: vou would write

DECOMP:0 YES 0:004.00
This says §f the last response was any number of woids (including no tvords
at all) followed by 'yes", followed by any numbe of words, transfer tu
statement 004.00. This is still too exact, hov:ver, and what you really want
to know is whether or not the student answered in a positive fashion. Jn
this case you would previously have had a statement

#{DS:P0OS5:0 YES 0,0 OXKAY 5,0 THINK 50 0, etc...)
This defines a string which {8 a "iule 1ist"” . . . a sevies of decomposition
rules to be referred to in a DECOMP statcment. hen, when it came¢ time to
analyze the response, you would write

DECOMP: (POS) :004.090
This says, if any of the rules in the P0S string apply to the lsst response,
g0 to statement 004,00,
Now let's try to sce if the responses were positive, negative, or unsure.
You could write

DECOMP: (P0OS)’, (NEG), (UNSURE) :£04.,02:006.00:030,C0
This says {f the ans er is positivec, go to statement 004,00, 1f it is nega-
tive go to rcaterent 006.00, and {f it is unsure, go to statement 030.00. We
can use the strings P0OS, NEG, and UNSURE because they ure permunently de-~
fined.
Now suppese you want Lo use a rule 1ist only once, and doun't want to go to
the bother of defining s. external string. Say, for example, if the student
types A, B, or C, you wanrt to go to statement 006.J0, but Lif he types D you
want to go to statement 019,00, The statemeut is

DECOMP:(*A B (},D:006.00:010.00

-13-

The elemant (* A B C) is an "{nternal word list." A word list is different
from a rule list, in that each item in the list contains only one word (no
phrases or 0's), and that, in DECOMP statements, jt is interpreted to mean

"any one of cthese thinge will do."

It may be the case that, during the ex-
ecution of a script, you have collected from the student a word list of,
say, his interests, You have called this list INTERESTS, and have collected
it with the aid of TRAC functions such as NT, NB, etc. (see Appendix C)
It looks like this: SKIING SWIMMING READING MATH. Now you want to sce if,
in the last response, the student mentioned one of those interests. You
would write this

DECOMP: O (/INTERESTS) 0:004,00
This tells the machine that the list involved is a simple list, not a col-
lection of rules. If the student input is any number of words followed by
either SKIING ar SWIMMING ov READING or MATH, followed by any number of
words, the rule fits. This time suppose that ycu want t: check for a pos-
itive response, but if cthe student says "I think so," you want to consider
that an unsure-type response. You can still use the same POS string, but
write brinch points directly io the call for an external rule list. An
asterisk says, if everything matches so far, keep going with the rest of
tte rule; a statement nuxber says if everything matchen this far, go to
this statement without tiying to match the rest of the rule. If wvou have
put neither asterisks or statement nuambery as in (POS), it says if every-
thing matches till hera, keep going with the rest of the rule, In other
words, it is as {f vou had writ%en (POS:#:%:%: ctc 7 ¥or example,

DECOMP: (POS:®:%:010.00:etc...):004.00
{his says, apply the POS rule 1lis¢ to the response, aitd if the third rule
applies go to statement 010,00 othetwise if a rule fite go to statement
G04.00.
fo be even more eladorate, let's say you waat to analyze . vesponse, bur
you want to make sure there fsa't a 'not" or "don't" or otler negative
word that would reverse the meaning of the response. You wtu'd define &
rule string

(DS :NOT:{(NEG),0))

: Nove that the second rule of the l!st allows for any response whatsoever.

Now you use it this way

ERIC

Pz | 1.}

BER

~
s

B
¥

-14-

DECOMP:0 (NOT:013.00:*) O PLAY O (%NOT:013.00:*) 0:008.00
This saye, 1f the response has negatives in it, go to statement 013,00,
otherwise, {f it has the word "play" in {t, go tc statement 005.00, anc 1f
none of these fit, go to the next statement. Note that rule lists may
refer to other rule lists, which may refer to otker rule lists, etc.
GOTO XXX ,XX

Transfers control to the designated statement number,
4. GETTING AND STORING DATA FRGM THE DISC

Every plece of data in the system {s labeled by a three-part name:

FILE:RECORD:ATTRIBUTE
FILE refcts to one of the 9 data bases. The user data file is a personal
file, containing information about the current user, his progress through
the system, inforvation gathered from him b; the system, The use of the
TRAC LI function :auses the current user's private f le name to be stored
in a string called NICK while he is using the console.
RECORD refers to a subsection of a file., In the occupation or military
file, RECORD would be a job title; in Fducation it would be 8 school name,
etc.
ATTRIBUTE is a subdivision of KECORD, such as SALARY or RELATED CAREERS
under DOCTOR, or TUITION under HARVARD.
The TRAC format for retrieving data is

#(FR:FILE:RECORND:ATTRIBUTE:N:2)
for example

#(FS:ECUCATION:HARVARD :TUITION:VAR1:%2020.00)
This wovld retrieve the tuftion for Harvard and store it as a string with
the name VAR, If the récord cannot be found, control is transferved to
statement 020.00.
should you wart to simply have the plece of data inserted into some text
you would writa

#(PS:text '(FR:EDUCATION:HARVARD:TUITION::020.00) text.)
leaving out the strirg name psrameter, but not {ts colon. In this case, if
the data cannot be founl, control would go to statermeat 020.00 withcut any
printing having occurred.
The 1RAC foimat ior storing data {s similar.

10

O

ERIC

Aruitoxt provided by Eic:

~15-

f (SRIFPILE:RECORD:ATTRIBUTE : SOME DATA:Z)
where SOME DATA 1s the actual thin3 you want to store under the specified
three-part name.
At this point it would be useful to become familiar with two more TRAC
functions, dealing with the student's last response. The first of these {is
#(CK)
This 18 the “call keyboard' function, and it has the value of whatever the
student typed into the machine last. If sn answer is to be saved for use
furthec on in a script, you would do it with a
#(DS:ANSWER: #(CK))
kind of statement.
The other tunctiorn is
§(xS:D)
This fr the "keyhoard segment' function, and its value is the Dth segment
of the student response, according to the last DECOMP rule applied to {t.
You will racall that D stands for a wumber. For example, the rule
0 BECAUSE 1 0 SO O
applied to the reaponse
BECAUSE I REALLY DON'T THINK SO AT ALL
would result in the following segments

Segment 1 nothing

Seguent 2 BECAUSE 1

Sepgument 3 REALLY DON'T THINK
Segment & $O

Segment 5 nothing at all

Eithur of thege functions way be used to specify the data in the SR segment
#(SR:FILE:RECORD :ATTRIBUTE:# (LK) :2Z)
or #(SR:FILE:RECORD:ATTRIBUTE: #(KXS:D):2)
Sometimes ssking for a specific plece of data 18 not enough. There {s also
the idea of asking for the names of all those records in a given file that
have a certain description:
(FR:OCCUPAT1ONS : NORE QUTDOORS:LIST:TEMP:#20.00)
Thie would put into TEMP a list of those names of jobs that require working
outdoors. Note that work outdoors i{s an actusl record name, and script
writers wust be sure that such a record exists before they request it. If
you expact & rather long list, eay up to 853 job titles, you will prudably

14

-16-

want to get a coded or '"BOOLEAN" versfon of the list.
#(FO:OCCUPATIONS : WORK OUTDOORS:LIST:TEMP)
In the data base, the record WORK OUTDOORS, for example, (or any record
that is actually a list) {s represented by 853 digits that are efther 1
(1f outdoors work {s required) or 0 (i{f outdcors work is not required):
00011020011101010...
where each positicn represents a job title to a data base decode table.
In other words, the system knows that the first position represents as-
phalt burner, the second candle snuffer, etc. Having gotten the list, you
might then see how long it actually is vith the CE functisn, for example
#(CP:#(CB:LIST):10:%040.00:2050.00:4060.0%)
which says compare the count of bits i{n striug LIST with 10, and {f {t {s
less than 10 go to statement 040,00, {f it 1s equal ot 10 go to statement
050.00, and {f {t 1s greater than 10 go to statement 060.00.
At statement 040.00, you might want to simply print the list:
#(DC:0CCUPA TIONS :WORK OUTDOORS:TEMPZ)
#(PS: 4 (TENP2))
but at statement 060.00 you might have the routine
060,00 #(PS:THERE ARE #(CB:TEMP) JOBS ON YOUR LIST. WOULD YOU LIKE 710
SEETHE FIRST PART OF THIS LIST?
061.00 KEYBOARD
062.00 DECOMP: (PC$):064.00
0063.00 GOTO 100.00
064.00 ¢ (DC:OCCUPATIONS :WORK OUTDOORS:TEMP2))
#(PS:#(TEMP2))
etc.
Perhaps, as in the pre[e}ence scripts, it would be useful to combine several
of these lists from the datx base and get the names of all thte things that
appear on all of the lists. For chis we have to use Boolean logic, but in
a very simple way.
There are four fuuctions we need for cumoining Boolean lists. These are

"and", "or", "exclusive or", and "

not
"AND" §s the function that determines those items which are on each of two
ligte. In TRAC {t {is

#(BA:N1:N2)

ERIC
P v 1'7

-17-

which says, compare all the ftems in 1ist N1 and 1list N2 and put all those
items that are on both lists into list N1. This looks very much like the
"compare for equalities" TRAC function, but there is cne very basic dif-
ference: '"Compare for equalities’ operates on a lisc of English words,

whereas

Boolean and' operates on a binary code that must de interpreted
by a decode table to find the English words it represents. This is also
true of the rest of tha Boolean functions.
"Boolean or" determines all those things that are efther in list N1 or in
1ist N2. '"Boolean exclusive or' determines those things in 1list N1 that do
not appear on list N2 and those things in 1ist N2 that do not appear in
1ist N1, For example, suppose we had two lists that were coded represen-
tations of

LISTl: ABCDEMNOP
and LIST2: M NOPXY Z
If we applied the Boolecan "and" function, we would have the list

LIST3: MNOP
as a result. If we applied the Boolean "or'", we would have

LIST4: ABCDEMNOPXY?Z
and the Boolean "exclusive or" function would return the 1list

LISTS: ABCDEXY Z.
The Boolean 'not" function gives us a way to invert the sense of a list,
For example, i{f the data base contained e 1ist of occupations requiring union
membarship, and you were interested in a 1ist of jobs that did NOT regquire
union membership, you would apply the Boolean '"not" function to the first
1ist, and have the second as a result,
In order to get these Boolean coded 1liuts from the data base, we use the
function: FO

(FO:OCCUPATIONS :UNION:LIST:*003.00)
This puts the coded {nformation in atring LIST.
In order to decode a Boolean coded string, once it has been operated on, ve
use the function:

#(DC:FILE:TABLE:N)

See HASM/DASM write-up for data availadle on ISVD syste:n,

5. COMMUNICATION BEIWEEN SCRIPIS

‘There are two main linkage strings in the system, LINK and STOP.

O
ERIC
1%

O

ERIC

Aruitoxt provided by Eic:

~-18-

A veturn link, or a STOP return point, is set up with the 'new top" TRAC
function:

(NT:LINK:TBISSCRIPT 006.00)
or # (NT:STOP : THISSCRIPT 007.00)
A script wishing to do a "return', uses this instructicn:

#(XQ: #{PT:LINK) : # (PT:LINK);
which 18, in this case, the same as

#(XQ:TEISSCRIPT:006.00)
which says, send control to (execute) script THISSCRIPT, statement 006.00
If the script 18 to branch off to snother one, never coming back, the in-
struction to use is

(XQ: THATSCRIPT)
to start at the beginning, or

f (XQ:THATSCRIFT:005.00)
to start at statement 5,00
If the script is to branch off to another one, expecting to return, the
NT function should be used before the XQ, to set the return roint.
Scripts that defire strings should elimirate these from core before trans-
ferring, unless these strings are to be used by the next script. This is
because space in core is rather limited, +nd only that material that 1s bzing
used should be kept there.

6. PERMANENT FORMS
Because of space limitatiors in the BTISS swapping area, we put some
commonly used forms in resident storage, where one copy served all users.
Although this saves spacc In user core, thase permanent forms are restrictel
{n that they may not be redefined or deleted and the forms polater cannot
be moved. These forms are descridbed in Appendix D. See comments in section
111 of this report.
7. A DYNAMIC DESCRIPTION OF TRAC CORE STORAGE FOR PROGRAMMERS
For those using the existing program, the GLURP listing itself

and its flow charts explain what goes on in detai). For those who will
be re-coding the program, a description of the TRAC storage management
scheme as developed by Mcoers and Deutch and others will be of interest.
I found 1t rather neat compared to other systems whith rely on myraid point-
ers to pleces of things and periodic "garbage collections" to retrieve

space in core.

-19-

Let's return to the TRAC procedure
#(DS:COUNT:1)#(PS:# (AD:#(COUNT):1))

and trace the position of %hings in storage as it is interpreted. The areas
we are interested in are the P, or active/neutral buffer, the F, or forms,
buffer. and the S stack. PL, FL and SL mark the ends of these buffers,
while registers RWN, RPN, FN and RSN point to the current position being
referred to in these stacka. In TRAC convention, the pointer to the end of
a string or a stack of other pointers is also used to point to the beginning
of the next string or stack of pointers.

In the beginning, then, the bui{fers &are empty with pointers point-

.08 as shown:

P PL
.| |
RWN, 4
RPN
S SL
1| - _ |
RSN
1
RATB1
C]
A
FN
Routine INI discovers a TRAC type GLURP statement, moves it into the active
stiack, and adjusts RPN:
P PL
[¢ (DS:COUNT: 1) # (PS: #(AD: #(COUNT) :1))|
t ' *
RHNl RPN
The interproter nov begins its scan at the position indicated by RPN, put-
ting non-syntactic information in the neutral stack and pointing to the
removed punctuation with pointers in the S stack. First it finds the
"#(and marke it in S:
P PL
[j' DS+COUNT 1) #(PS:F(AD: #(COLNT) : 1))
g Do —_— z o
RHNI RPN
O

ERIC N

P v | 2

-20-

SL

T 1t —— —

RAT82 RSN

The first three $ entries are for resuming scan after the function just found
is evaluated. Entry 1 marks the place in the neutral stack to which the
value of the up~coming function should be moved, or where the neutral stack
marker should be 1f there is no value to the up-coming function. Fntry 2
indicates that the deferred function is active when the scan resumes for
that function, and entry 3 points to the beginning of the stack of pointers
for the deferred function. These become more useful {n the case of nested
functions, 25 we shall see later, RATB 1is now set to its new beginning-or-
funclion pointers position and one more entry 18 made vo indicate the begin-
argument-1 pointer of the current function.

Scan continues to the colon, with non-syntactic characters going

into the neutral stack and the colon noted in che S stack:

P e) PL
[DS coum':1)0(Ps:¢(w:0(counr):1))]

) A

RWN, RPN
S . SL
[}WNILI lmml Irwml lmmz I] —J

4)
RATB, RSN

And again:

P . PL
[DSCOUNT l)l(Ps:l(m:l(COUNT):l))]
1 B
RWN, RPN
s N sL
wllllumlinwllxwdkwﬂ J
Pv:nz REN

Now we find a right paren, mark {t in the S stack and go off to execute
the coding for primitive D&, which creates form COUNT {s forus storage,
The arguments for D3 are marked by the entries in S stack, argument 1 being

ERIC

Aruitoxt provided by Eic:

ao
| .y

-21-

from RWNI to RWNZ, argument 2 being from RWNZ to RHN3 and argument 3 being
from RWN_ to RHN4:

3
P . . L
Pscounrl #(PS:#(AD:#(COUNT):l{ﬂ
) 1
RWN, RPN
$ SL
[iwnllllru\ml] Rwllnwlenw:‘]ﬁw,‘l .]
RIEBz Rgu
F FL
I [1[2]A]s]c]r [count]X
) - B 14 0
FN AB c

FUNDS returns to NULTRM, indfcating that the function has no replacoment
value., Whereupon the interpreter recovers the space in the neutral stack
(referring to entvy 1), removes its nctes in S stack about the function
just finished, and picks up the rest of the pointers in the S staik to

resume scan of the active stack:

P : o PL
[#(P5:0(AD: #(COUNT) :1))
1 i
RU!\‘1 RPN
S _ o s e ﬁj
1
RSN
RAT Bl
In the same fashion wa analyze the rest of the functionus in the active
stack.
Step 1:
P PL
[’ P5:# (AD:#(COUNT) : 1))
t — t
RWI RPN
Q
Hﬂi:ﬁﬁﬂ 8.

oD
hy

22~

FWNI IllRATBllRWNIF

f *
RATB, RSN

2

Step 2

P PL
s #(AD:4 (COUNT) :12]
) 1

RWN, RPN

S__ .Sk
[EMNJT [RATBITRwNﬂ mmz]) J

RAtsz RéN

Step 3:

P PL
pg AD: # (COUNT) : 1))
T4 S

RWN, RPN

s . 5L
[R‘mdl]““ﬂmmﬂ Rmzlszlﬂmrsztzmz mﬁl]

RATB, REN

Step 4:

P Pe
lf_sfn - l(counr):13_)J
f N o

RWN RPN
s . sL
[mii 1|RAT81J an'l] mmzlmmzl 1] mrszl an—zl RWS] J
RA?IBJ Rgﬂ

Step 5 and 6!

P PL

[Pswcou.\’r 1))]
T)
RWN, RPN

oo
C‘N

ERIC

Aruitoxt provided by Eic:

‘ .
{Zm«l]1Tmal|mllmzlmail]maz|Rﬂawﬁwﬂﬂu:sglms[m—ﬂ 2

RATBa RSN

Here we finally fini a right paren, which sends us off to execute the
function. #(COUNI) is an implied call of form COUNT and has u replacement
value of the contents of COUNI. Upon return from the function storage
looks like this:

P - PL
[P SAD 1:1))}
t t
RWN, RPN
S SL
[mmll quATBJ Rwlﬁw_zlxwzl 1] xmszisz] msl _’
RA'TBJ RSN

|

vL
ilJZlAlB[CllICOL‘N}"Y
? Tyt

N AB C
Note that the value of the function #(COUNT) has been put in the active

stack for rescan, since the function was a single sharp, or active one.

As we get to the next right paren the picture is:

P _ PL
EPS”’I_L . -_7 J
‘ [i
RWN, RPY
S
[%ﬁndﬂinsﬂ’iwll sz]'a‘ﬁ«’z]’lﬁffaz] Rw2| mm5| R»mﬂ RUNGL I
m’x By R§N

wh'ch evolver Into:

P _ PL

PS 27]
7 I ?
RWN) RPN

hwy
-

O

ERIC

Aruitoxt provided by Eic:

[2"”1 |1| RATBYI RWNll RWN, [Sj
o,

and:

P o o . PL

[) .]

RWN,

s . SL

[mml|1 rumall RWIIRW2J’1W9] J
R:\‘TBZ RI;N

"2" appears cn the console. the end of the active stack is found, and cor-

trol racurns to INI for the next step.
6. AUTOMATIC LOGGING ROUTINES

In order to help script authors to evaluate thelr scripts . . .
where they are misinterpreted by students, where they fail to respond ap-
propriately to atudeats, how they are most often used, etc. . . . we made
ugse of tha existing BTSS lo2ging mechanisn to record certain events on the
"log tape.' These entries are made to the log as they occur, with iden-
tification of user, time of occurrence, etc., associated with each message.
See write-ups of BTSS log routines (RCA provided materfal) and the log
priut routines for more detail,

The call to log a message requires the following procedure: the
2~character s-code must be in location SCODE, the address of the leg routine
to format the proper message wust be in location CODEGG, and rcontre' should
be transterred to the addtess specified in SETLOGAD with that address In
register 1. The log routines themselves run in P{ so that Pl register:
rerain urdistrudbed upon return from a log call, See write-up of 1SVD log

routir~> for further information.

e
(U

25~
II. ADAPTING GLURP TO OTHER BAL-ORIENJED MACHINES

1. GLURP INTERFACE UWITH TUE RTSS SYSTEM
Communication with the BTSS system from a Pl prougrsm !s through
SVC's. GLURr uses seven of these, which must be efther deleted or re-

placed in the transier to another system.

a. GET and the KEYBOARD routine
Used by GIURP to access material from the corsole. (We slso made changes

to the BTSS console 1/0 routina {tself tc £3: the Sanders 720 console, but
I1'11 assuma that the receiving system alrevdy communicates with the con~-
soles to be used.)

GEI 1s used in the KEYBOAKD routine, prevedcd by a PUT with the get bit in
RFLAG set to tell the system a GET follecws, atd foilowed by a DELETEF to
erase the mestage from the system buffers. (sce FAPMAP write-ups.) This
routire fs highly specific to the Sanders 720 and would have tc be re-
written fcr another <onsole.

The KEYBOARD routlne includes two ocher functiors besides receiving infor-
matice from the console. It makes note of a porsible HELP branch spec{fi~
catfon, which it stores in HELPPT, and it sets up pointers in PBUFF, point-
Ing to each word of the newly received input.

Also note that the LK function uses the KEYBOARD routine to move a message
from core storage into the input buffers and set up the pointers in PBUFF.
If the student typas a TRAC statement at KEYBOARD or there has been an errcr,
entry point KEY? ‘s used to repeat the GET.

b. PUT ard the (RT routines
Used by GLURP to send information to the console. PUT {s used in the OUT2

routine, and when entered carries in register 1 the address of the calling
sequence st BUFFJ and described in detail in the FAPMAP write-up. (RCA
provided matertal.)

The various CRT csutines and the OUT routines do considerable formatting of
the output string to make it acceptable to the Sanders 710 and would have
to be re-written for enother system and/or console. Note that OUT2 {s
merely an extenafon of the CRT coding and that the CRT coding follows the
specifications as stated {n the language description (section 1). PUI is

ERIC

o o 26

T

also used to tell the BISS system to be ready to receive from the console
Just before a GET.

c. DELETEF

Used in conjun:tion with GET to tell the BTSS system we are finished with
the firac record in the input stream a1d that it should be deleted from
the buffers.

d. CEOT
In theory, this checks to see {f the student haa pushed a "break" or "in-

terrupt" key, in which case we start over again.

e. EOT
Used to transfer control from GLURP to the BTSS system.
f. LOG

Used to send material to the BTSS log routine.

g. SETP2
Used to set GLURP into the P2 programming mode. This was required because

there was no room in the user area to build up a log message.
2. GLURP INTERFACE WITH THE DISC

As {t exists, GLURP relies on routine HASM to retrieve information
from the disc. In designing tbe system, we assumed that the most experi-
mental part of the scftware would be the disc storsga and retrieval systen.
Thercfore, in order to insure that scripts would not have Lo be rewr{tten
to reflect ¢ach new data storage scheme, data access would renain symbolic
at the script and GLURP levels. HASM {5 tle routine, then, that would be
re-written as the interface between GLURP and whatever data access routines
were avaflable on the new system.

Unfortunately, the symbolic aspect was not carrled out fully.
There are numerouvs TRAC functions related to the disc which may have to
be redefined and rewritten or deleted in transforming GLURP into a new

system. This is a sinmple procedure, as described in tha next sectfon.
3. CHANGING OR ADDING TO THE GLURP PROCESSOR

Coutrol comes to the coding for 2 IRAC primitive with register 15
set as the base register to that coding The urguvents for the function

ERIC

)
rorecrosieio enc) A

O

ERIC

Aruitoxt provided by Eic:

-27-

have been completely parsed into the neutral stack with syntax pointers
in the S stack. (see section I.7) SN holds the pointer to the last
meaningful pointer in the S stack, which i{s the last character of the
last argument of the function. I1f a function has a variable number of
arguments, SN indicates the position of the last argument given in this
particular function call. Otherwise, routines GET, GETF, and GOZ may

be used to retrieve arguments. For descriptions of these and other pos-
s8ibly useful functions, see listing, "TRAC SUBROUTINES" section.

To add a primitive to GLUR?, insert the 2-character mnemonic,
in alphabetic order, in the TESTOR table, and the address to the coding
for that function in the corresponding position of the TESTOR2 table.

The actual roding for the primitive should be Inserted in the "PRIMITIVES"
area or nore, for base registcr considerations.

To add a non-TRAC statement; insert the first & characters of
the statement name, {1 alphobetic order, in the UNTABL, with the address
to the coding for that function immediately following. The actual coding
for tle statement interpretation should also be in the range of the EASY
base register.

4. STORAGE ASPECTS OF GLURP

The ISVD system is a dedicated one! {ts who.e computing capacity
is given over to the execution of the sciipt network. This wss done mainly
because we were working from the only then-existing bSpectra time-sharing
system which was dedscated to FORTRAN. It was practical, ihen, to make one
re-entrant copy of the GLURP processor, residing in permanerc¢, read-cnly
(storage protected) core where FORTRAN had formerly resided. Its variables
were located, as they had been in FORTRAN, in a specific user storage area.
In BTSS this user area fs a constant one, the materfal in it being swapped
in snd out as eech user's time slot comes arcund. Other systems will bave
other wvays to manage user areas, but by manipulating register 13, which {s
the base register to the storage area, GLURP may be used in a dedicated
system, with multiple programsring or time sharing, or as a user program in
efther mude (or combinatlon node).

The permanent forms were created in desperation during a spare

squeete, aad should be returned to a variable user area {f possible. These,

N
o0

» wewn

O

ERIC

Aruitoxt provided by Eic:

LS A e G L T YA A T A N L T T B U ey GBI e W Y e Amt e e v -

-28-

of course, then become part of a script and are modified with the script as
new networks pre developed. As it stands, the permanent form3 are modified

to reflect changes in storage of permanent forms.
5. SCRIPT DEPENDENCY IN GLURP

As it stands, GLURP insists that the first script accessed be LOGIN
(coding at TRACLO), that a script retrieval error be processed by the STOP
script at step 473.20 (coding at INI and locations STENTRY, STCONST) and that
there exist scripts STOP, DATA, SUMMARY, and QUIT. The later requirement
can be changed by changing the UNTABL and its associateé¢ coding in the ''UN-
NESTED FUNCTIONS" section.

O

ERIC

Aruitoxt provided by Eic:

.20

ITI. SOME OF THE TRINGS THAT ARE WRONG WITH GLURP

1. SYSTEM ASPECTS

The ISVD system resides either in the wrong software system or on
the wrong machine or both. Had we known the time and effort required to make
BTSS behave the way we wanted it to, and our inability to really make {t
work the way or thought it should, we probably would have started right out
te write a system from scratch. This {s especially true since we were fin-
ally limited t¢ six consoles, which could just as easily have been handled
in multi-programming mode without the Inefficiencies of core swapping.

The original rationalization for a big machine was that a) we would
be handling a very large number of consoles, and b) that we would be apply-
inz large statistical programs to the available data. Neither of these
things can be evolved from the system as it stands.

If we were to start ovar again, I would suggest that the ISVD sys-
tem be evolved as a user program for an existing time-sharing system, allow-
ing the system to be used by the schools for several functions at once. I
would also suggest that the data be made available not only to scripts by
way of GLURP, but to FORTRAN or cther computational oriented languages for
use by researchers.

Mooers has suggested that TRAC could serve as the controlling lang-
uage in a multi-purpose time-sharing environment. This may be true, but
developing a system in this way is certainly beyond the scope of an educa-
tional system development project in view of the many usable existing time-

sharing programs.
2. LANGUAGE ASPECTS

We chose TRAC as the basic element of our language because, among
other things, it 18 interpretive and retains a great deai of flexibility
that compiled code canno* provide. Also, TRAC {s easier to use and to ex-
pand than other string manipulating languages.

The cuhsequences of the language remaining interpretive rather
than compiled, however, produces the decided disadvantage of bdeing slow 3nd
space-consuming. We were not able, fa the time given, to find a midpoint
between the fsterpretive and compiled modes in the development of GLURP.

O

ERIC

Aruitoxt provided by Eic:

- 30-

What we did instead was to create a second, completely separate mode for
some statements that ran interpretively, but in a semi-fixed format and
without macro-expanding capabilities. This added efficiency to GLURP, in
that simple kinds of tasks (CRT, KEYBOARD) could be performed without
lengthy analysis of what was to be done, but does not contribute to be homo-
geneous, flexible language.

It became obvious that the answer to all this is that the author
language must be defined with the expzctation that it will be at least
pre-processed before execution if not compiled into machine language.

Every attempt to achieve this, however, maniged to reduce the flexibilfity
given by TRAC. (see Appendix E)

Another obvious defect in GLURP is that it has no computational
capabilities. Obviously, given a large data base, it would be nice to be
able to apply statiscical techniques to it. 1In the existing system not only
Jdoes GLURP not lend itself to the handling of arrays, but the HASM/DASM
rcutines ¢o not lend theinselves to data scanning ind/or selective extract-
ing of data.

We did some work in applying BEATON's work to TRAC, but set this
aside -- permanently it turned out -- while we solved other problems. (see
Appendix F) Had we had space enough, we would have left FORTRAN in the
system and created a GLURP statewent to call it fn. The problem would
still have remained, however, of how to built an array in TRAC to commun-
;cate to FORTRAN-like programs and/or how to make TRAC-1ike or FORTRAN-
like programs able to scan the data btase for specific classey of data.

(see Appendix G)

Another defect fn GLURP is its complexity from the author's stand-
point. The whole matter of translating what the student wants into a data
access command i8 extremely tedious and incomplete. The ELIZA method of
determining keywords and subject matter, the English-like data interface,
and the ability of TRAC to create strings from student input are all im-
portant to student control of the system. The author, however, is expected
to anticipate, at every KEYBOARD statement, an incredible variety of pos-
sible inputs and to provide responses for them. The student command idea
was introduced largely to help correct this problem . . . it was just too

much to ask an author to check each time whether the student was trying to

O

ERIC

Aruitoxt provided by Eic:

-31-~

change the subject or not. The permanent rule list3 (POS, NEG, etc.) were
another attempt in this direction.

I think, given time, we would have looked harder at the ELIZA
scheme of script levels, looking for ways that scripts could build on one
another. DECOMP statements would, {deally, be built dynamically according
to the previous context of student input, and probably in conjunction with
a thesaurus stored on the disc. This means, of course, that the DECOMP
statement would not look much at all like its present form. Linking and
clean-up problems should be more automatic, allowing the authoar to con-
centrate on subject material vrather than TRAC techniques.

In fact, the whole concept of keeping track of what the student
had said, his interests, his choice of vocabulary, of what data he had
actually accessed and what more, therefore he niight be interested in, was
left entirely up to the author. This was not our original intention. We
had hoped to find a scheme whereby a context grid of some sort would not
only be automatically made for the author, but would alsc be used by the
data access routine to anticipate the needs of the student, thereby speed-
fng up response time of the system.

At one point I played with the 1dea of a script language follewing
the Tiedeman paradigm, whereby a block in the script would have a forwat
somewvhat like this:

1. text presentation

2. accept student {input

3. LURP decides whether input fs a statement or a question. If {t's a
question, go to question-auswering script and return to step 1. We
keep track here of whether the student has put himself §n "e-ploration™
mode, and what pieces of data he {8 requesting.

4. Analysis by author of 'correctness' or ~ontex -:f 1.} .t and branch
appropriately.

This led to the idea of the HELP branch on the KEYBOARD statement, and

student commands, but to nothing in the way of "monitoring” or automatic

record-keeping.

The ELI1ZA language wes found to be cumbersome in its lack of ¢ n-
cept of sequential steps within a script. GLURP, on the othar hand, in
being primarily sequential in flow, does not encourage the script writer

L]

w e

-32=

to think ir terms of student input rather than author cutput. 3Sorewhere
in between lies the ideal.

Certain critics have told us the ISVD system sl.muld hase been
coded in YORTRAN so that it could be trancferred easily to another machine.
Aside from the obvious lactk of familiarity with system implementation behind
this sort of statement, I am glad that we did not do so. I don't think
anyone on the project would consider the current system useful in the real
world except for the lessons we have learned, the advancement we did make,
end the hope it extends that such a system co':ld be a great contribution
to education and the presentation of data.

We have spent some time working on the problems of understanding
English. More time should be spent considerirg uow to make data available
t0 students in more ways, and how to make life easier foiy the author {n

terms of autonatic record-keeping.

ERIC

s a5

O N A
"

APPENDIX A

TRAC, A Procedure-Pescribing lLanguage
for the Reactive Typewriter

Calvin N. Mcoers
Rockford Research Institute, Inc.

{ncluded with pernissicn of the author

ERIC

Aruitoxt provided by Eic:

Ca
[V

-33-

RAC, A Procedure-Describing Language for the
Reactive Typewriter

Calvin N. Mooers

Rockford Vesearch Inslitute Inc., Combridge, Motsachusselis

A deuwcription of the TRAC (Text Reckoning And Compiling)
longuage and processing olgorithm is given. The TRAC longuoge
was developed o3 the bosis of o software pockoge for the
reactive typewriter, ln the TRAC Jenguoge, one con write pro-
cedures for accepling, noming and storing any character string
from the typewriter; for modifying any string in ony way; for
Ireating ony siring of any time s cr execvtoble procedure, or
os 0 name, or os texl; and for printing out ony string. The TRAC
longucge is bo,ed upon on extension ono generolization lo
charocter steings of the progromming concepl of the “macro.”
Theough the ability of TRAC 1o occepr ond store definitions of
procedures, ihe copobilities of the lonjuog * con be indefinitely
entended. TRAC con hordle iterotive ond tecursive pro-
cedures, and con deal with character sirings, integers ond
Boolean vec’or voriables.

Precen-cdat an AUM Progesmming Lar gorgrs ar A Fragmat e
Conforerce, S-nbumae, Califorein, Apgnst 195, 4 sipplementary
paper. tot caibe arnouneed program

The preecitwerk was aupported inpart Dy the llanirg gra-te
Al corrtracte Advarced Recearch Projects Ageacy eontract
S G Information 8cien e« Brarch of the A1 Force Dffce of
Seerhife l’rﬁrsnh cortrnete AP AFOSE 376 G7 ard 401 AL
Grereral Medicins Natioasd Fraitutes of §leadtt

EMC ‘ |Ilﬂ horcrvier gt MO IOM]

e] “March, 1766

Nuniber 3

P
Jdo

Introduction

The Tunve (Text Reekoning And Compiling) Loguage
syvatem s a vser lasguage for control of the comprter and
storage parts of a reactive (vpesriter system. A reaetive
typewriter s toderstood to be oue of a nunder of tele.
wpewrites simultancously coanested online by wire to a
memorny and computer complox whieh petinits real time,
multiple aceess (time sharedd operation. Tn the phi-
loraphy of the reactive txpewritie, the man at the 1y
writer keyboard is the focal point of the system. The
conneeted storage and computer devices are considered
to be peripheral servive tnits 1o the ceactive typrwriter,

The design pouls for the Trae language aid its transat.
ing sy~tem ineluded: (10 high eagability in dealing with
Bback ard forth camnmndeation between a tan at o Key-
bord aad his work on the machirve, so as to porndt him
to make inscrtionz and interventions duting the sunning
of his work,) mavmam orathty in the
ard performance of pay welt G hned peendure o foat,
(31 ability to dofive, store and salecoguontiv e sy pro.
exdures ta catond the capabilities of the bingage. wnd
finally (O maxinmm darity in the lacgnage iteddf so that
it could beocasly tanght to othons X dicusion of theee
thisign @oals, Ak of the design decisians wha li went 140

detinition

Commnnicatione nf the AL M 215

ERIC

Aruitoxt provided by Eic:

~34-

the language, may be found in a omparion paper [1).
The Trae language has now been programmed for several
comjuters. Jt has shown a high degree of stability during
the past year of experimental use,

The present Trac language is wachine-independent
and is cdosed with respect to operations performed upon
sets of characters from & typewricer kheyboard, The pres.
eut language should be preciscly designated as “Trac
64,"¢ Luter vemions of Trac are expected to lave :ue
ability to deal with strings of machine coded words and
with stibroutines, and will thus be self-insplementing.

The Trace language was develojvd after 2 study of a
number of procedure-deseribing languages, but orly after
it was concluded that each of these had features which
were helieved to be unsuitable or -induly constraining for
the purposes contemplated by Trac. In particular, the
Tanguages TPL-Y, Lise and Cosat were carefully v
amined, In bridd, IPL-V appeared to be 104 closely ori.
etited to computer programining, Lise Lad sevee restric-
tions due to its “stomic’ symbols, certain nceptual
canfusions and oo great an orentatior '« rr. hemaiical
logie, Comit, whik suitable in many res; . s, had the
rigidity nsowciated with a compiler. Wher © rk was Iegun
on Trae (1900) none appeared to have the vapabilities de-
sired, though they were a definite sotree of inspision,

The prime stimulus o the prorent Tuae language came
from two nuportant unpublished tapers by Eastwood
aned Mellroy [3] and Mcllmy {a]. The first paper deseribed
a maecm assembiy systemn having run-time definition.
making and decision-inaking capabilities. The second
paper showed how this system could perforn very general
manipulations on synibol strings. TRAC is a tefinement and
extension of the macro approach of these papers, There-
fere it can be said that the present Trau systern consists
af a machine.independent Janguage together with a
gencralized macro text processor which runs interpretively
to provide versatile interaction capabilities at run time.
A recent, indepepdently developed systerm by Strachey
[5] his o nunsber of ranarkable similarities 1o Trac,

TRAC Syntax

A 'TrRac string may contain a substring enclosed by a
matching pair of parentheses, such as (¢ -) where the dots
indicate n string. The matching parentheses indicate the
soope of sorne partionlar action, There ane thres cases,
cpitamized by €(-«-), ¥ &() ind {~-<}! The firet
two fonnats indicate the prescnee -.f 8 TrRAC “primitive
fusction.” The format & (- --) denotes ain “exlive func.
tion,” whils the fermat & & (- --) denoles a “reutrsl
finetan.” This distinction is elarified below The string
interior to cither kind of function iz generally divided
info caletrings Ly commas ag i &0, ,) nhere these
stbstpiogs constitute the arguments of the funetion.
Panidlicses in the fonoat (- -+) have ronighly the rame

VAhe cotrpaters are the Dpsal Fodipment PRPY, PDPS,
the Grreral Flecrr v Iasss et ool the Rorrifir 11ata Systems
AR RCE £

PThe g oaeral paper Woa povision and exterelin of 721

YA h the mrendel RE Trletype, the aponcn w7 character iy

Q “rred pctead (f the sharp eign
Con:munications of the ACM

1Y

role as paired quotation warks, and, in particular, what-
cver string s inside the paired parentheses is protected
from functional evaluction,

Trac strings are dealt with by the Trac processor
according to a seanning algorithm which works from left
to right ard performs the evaluation of nested eapressions
fron inside entward. Tn the expression

IR Y i), s8())

[} 3 § H

the funetions are cviluated in the order indicaed. As
cach function is evaluated, it is replaced in the Trac
string by the string (possibly null) which is its value.
The evaluation of an active function is followed direetly
by the cvaluation of any function in its value string not
protected by matched parentheses. The value string of a
neutral funetion s nov further evaluated.

Examiples of Functions

An example of the “defie string” primitive function is
the expression ®{ds, A A, CAT). This causes recording of
the string CAT i the memory and places the name 41
of the string in a table of conteits. The string ean be
called out of memory by the “call” function w(ef,.1A).
The r =ult of the cxll function i< to piaee the string vidueof
the call, namely CAT, in the foriner location of & (d,.4.1),
with an expansion or a elosing up of th~ <urronnding
sirings. The eall fumetion is i the eass of fundciions
having a “velue string.” The define string function is an
exataple of a fure fion having a “avll value'; ie, no string
is l2ft behind in its place after its cvaluation,

Evaiaation of the "rcarl string™ functinn & {re) causs
the processor to aceept vt froe: tho typewriter, s
value 18 the xiring as receivid from the typewriter up to n
terminating “meta character™ which is waally taken to
b the ap<strophe. The wicta chiaracter can be chang 4.
The “print string” futction &2 X) causes printing out
of the argmnent string, here represented by the svmbal X,
It hoas ol value, The niested expression s {ps s (el A1)
will canse CAT to be printed ont.

In the bLeginning, and at the completion of cvery proe.
essing cycle, the Trae “wlirng procedure™ & {ps, # (rs})
is artomatically loaded into the Trac processor. It is
there{ore seen that all sirings and programs ar> (fectively
loaded into the interior of the idling procadure, and fu:-
thermiore, &l TRac computations are made on functions
nestod within the argumient string of some other function.

TRAC Algorithm

The Trae algorithm govarns the prsciee manner in
which Trae (xprssions are soanted av ! evaluatad Ly
the Trac procczsar. Mt the beginnit g the unoy alintedd
strings are in the “active «tpng™ and the seanong
peinter’ painte ta e Jefte ~r chacactor in thie siring
Ascharacicr have boen rreated by the scanniog <tganthia,
they nay i added to the right haad cod of & “reeutral
siring.” which is s callidd bveanse its characlers have
bocn fully treatad by e aigarithm aad are thus noateal,
Like alphabetic characters. The algorithi folloas,

Vnlume 9 ' Number 3 March 1964

-35-

1. The character under the scanning pointer is exom-
ined. If there is no character left (active string cmnty),
go to rule 14,

2. If the charaeter just <xamined (by rule 1) is 2 begin
parenthesis, the character is deleted and the pointer is
moved aheud to the character following the fir.t matehing
end parentaesis. The end parenthesis is deleted and all
nondeleted characters pussed over (including nested par-
entheses) are put into the neutral string without chauge.
Go to rule 1.

3. If the character just examined is cither a carriage
retum, a line feed or a labnlate, the character is deleted.
Go to rule 15,

4 If the character just examined is a commna, it is
deleted. The locetion foilowing the right-haud eharacter
at the end of the neutrai sising, called the “cureent loca.-
tion,” is marked L a pointer to indicate the end of un
argutnent subsiring and the beghming of a new argument
substring. Go to rule 15,

5. If the character is a sharp sign, the iiext character is
inspected, If this is a begin parenthiesis, the beginning of an
active function is indicated. The sharp sign and begin
parcnthecl are deleted and the current location i the
neaal string is marked to indicate the beghming of an
active function and the begitnming of an wrgiiment syb-
string. The wcanning pointer i~ moved ta the charactcr
following the deleted parenthesis. Go to mile 1,

6. If the character is a sharp sign and the next charaeter
is also a sharp sign, the sceond-following character is
inspeeted. If this is a begin parenthiesis, the beginning of a
nentral functien is indicated. Tweo sharp <igns and the
begin parenthesis are deleted .nd the current loeation in
the neutral string is marked to ind’ ate the beginning of a
neutral function and the beginning of an argument sub
string. The scanning peinter is moved to the character
following the deleted parcnthesis, Go ta mle 1.

7. If the ¢ .aracter is a sharp sign, Imt 1 cither rele 5 or
6 app'ies, the character is addid to the ncutral string,
Gio to ule 10

S. I the eharacter s anc e parcnthesis, the character
it Adeted, The current Loation in the ncuteal string is
markad by a pointer to indicate the ene " an argument
substring and the cod of a finetin. The pointer to the
beginning of the current from t2n is now retrieved. The
complete sct of argument subet'ngs for the function
have now bevir defined. Tie action indicatad for the fune-
tion is perfor wd. Go 10 Fale 10

8. If the charact:r merts the test of none of the rules
2 thirough 8, transfs ¢ the chiaractor to the niglit-hand cod
of the neutral string and go to rule 1o

10, ¥ the function hae ot value, go 1o rule 13,

11, H the furction was =n 2rtive farction, the value
sprg e nserted o the bt of frecnd g) the first nn.
geannod character m the actove string. The s oannjng
pointer is roset g0 as to gpaint 1o Fo location parced,og the
firct charact:r of the now valie = neg. Go ta rile 13,

12, 1f the function was n cural fosction, the valo

Q ghzinsctteVinthe neatidl - ring vithits firsg ~harae-

e e 9/ Nomber 3/ Mavrel I 4

RN

ter being put in the Jocation pointed to by the current
bega-of-function pointer. Delote the argionent and fun -
ticn pointers hack to the begin-of-function pointor. Foe
seanning pointer is not reset. Go to rale 15,

13. Dadete the argument and function pointers back
to the Leginof-function pointer for the function just
cvaluated, resetting thie curcent location to this polnt.
Cin to rule 15,

14, Delete the neutral string, initialize s pointess,
reloud a new copy of the idling procedure into the active
s{ring, reset the scanning pointer to the beginniig of the
idling piroceduie, and go to rule 1,

15. Move the scanming pointer ahcud to the
character. Go to oole 1.

The Trac processor will accept any string of symbols,
Nonexisient functions are given a null value. Onitted
argunments are given a null value, while extra arngmnents
are ignored. Omitted right parantheses will cause the
processor to trminate ils action and reinitindize itself
at an anespected point, while extra right parenthe-es are
ignored and deleted at the end of a procedure, When the
Jrocessor becomes too full, perhaps due to an infiniwe itera-
tion or recursion, a diagnostic is typed out to padicate that
fact and the processor i re-initialized by going to rale 14,
The break key stops any action and causes e nitializa.
tion,

The TRAC Functions

Ioput Qutpnt. - All functions are shown in their aetive
r presentation, which is the forny most often used. A=
shown, the argument strings are presumed not to contain
functions or othicr active mater.

& {re) read steing” (ohe argunient), (Note that the
mnemonic for tha function uanie i cotnted ax the fint
sigument.) Toe value 32 the string as read fror o the teies
typewriter keyboard up to the peint of ocourience of
the meta character, which is deleted.

& (re) “read character” (one argumenty. The value
is the nest character, which may be any «haraeter (in-
cluding the meta character) reccived frora the teletype.
writer.

s (cm,X) “change aaefa’ (two argumentsy Fhis
nollvaluad function changes *7.e meta charseter to the
first eharaeter of the string symbolizad by N Upon start.
ing, the Trac vrocecsor i8 leaded with a staodanl nicta
chareoter, usnally the aposteephe,

& (pe,N) “print string™ (two arguments), This imli.
valued function prints out on the teletypewriter the
string represented by N

D firie and Call Furetions

& (de. N X) “define string” (thne ogumonts. Thes
is a pullvalud functon The #trivg symbolizad Ly X s
placed in storage ared is given the name ssinbalizelb by ¥
The name s paaced in a name List or Gble of enntents 19
the “farme™ in storage. A “fonm™ s a tamed s e in
storage. If a form i already in storage with tone N,
thiz form is trased. The name N may be a ol < g

(e N N1 XN2.--2) segmenit iritg” ‘thie Gr noon
arguments). This ie a salbvaluad funition, The fong

HTR N &

Commynicalinns of the \f Y 203

-36-

named N is taken from storage and is scanned from left
to right with respect to string N1, If a substring is found
n.atching X1, the locatisy of the wateh is marked. The
matching substring is exeluded from further action, thus
ereating o “‘segmient gap.” The rest of the forni is scanned
with respeet to XN to create anyv additional segment
gape. These segment gaps are all given the ordinal value
one. The paris of the form not 1aken by segment gaps
are now seanned with respect to string X2, with the crea.
tion of segment gaps of ordinal value two. This action is
repeated with all of the remaining argument strings, At
the end, the marked form, along with its pointers and
ardinal identifiers for the segment gaps, is put back into
storage with the namie N, The untouched portions of the
string in the form are called “segiments.” It is scen that
the segment string function ereates a “miaere ’ in whieh the
arguments X1, X2, cte,, indicate the dummy variables,
The segment string funetion subscequently can be applied
with other wgnsents to the same forin, with the restlt of
new segment gaps being ereated with ordinal value one,
two, ete, and being inserted among those already theie.
A ol stemg for one of the arguments X' eauses no setion
for this argument.

& (el N X1,X2,--2) “eall” (two or tnore arguments),
The value is genernted by bringing the form named N
from storage and Alling the segrierdt gaps of ordinal value
one with string X1, the gaps of ording] value two with
string N2 -md ~o on for all the segraent e b tha forn,

The following spncinlized enlls read out a part of a form,
They ticat the segraent gaps as if the gaj« were filled with
the nuit sving. Chese ealls fer, ee, en, anc 1n) preserve
the nentral active fanetion distinetion ouly £ar the strings
coming from the form named N, Since the alternative
valie of these funetions, symbalized by Z. nay be a call
to a procshores the alternative value is tlways treated
as il the function were active,

AN abe eall functions (el ea, ce, cn, and in) tcald the
teat of a form beginning at the location indicated Ly a
“form pointer " whirh is part of the apparatus of the form,
Iitinly the forme painter points at the first characier
of the Torin, The eall Tunetion docs not «bange the form
Iointer,

(e N 21 Cesll segnaent™ (thnee anpuments). The
value of this fundtion iz the string from the curnnt
location of the form pointer to the nest scgment gap of
the fn naed N T the formy is anpty, the value is Z,
The form pointer is movad ta the firet charaeter following
the segment gap.

a(ee N veall character™ (three arguinent). The
value is the dhiaractor wder the fonn pointer I the form
i omptyy e vatae is 20 The form pointer is moved one
Aiaracter ahoad Saoginent gaps are skipped),

wlen NDZY veall nocharacten (four arginets),
This function mads from the form pamed N fron the
pomt indieatad by the form ypointer and continuing for a
st of charadters sped fied by the decital integer
mumber it the tail aed of e dring sxmbolized by 1),

X Q aps ane ckipped Wothe decimsl mmmtsr s
2vvnnnm|z-'ion« of the ACM .

g

positive, this function reads the string to the right of the
pointer; il negative, to the left. ‘The strings so read are
preserved in their character sequence. If 1o characters
are available 1o be read, the value is Z. The form pointer
is moved (right or loft) to the next unrcad character.

% (in, N X,Z) “initial” (four arguments). Starting
from the form pointer, the form named N is searched for
the first location where the string X' preduces s mateh,
The valur s the string from the pointer up to the charac.
ter just before the matehing string. If a mateh is not
found, the value is Z. The form pointer is moved to the
character following the matching substring, or is not
moved il there is no match.

% (cr,N) “call restore ‘two arguinentsy, This null.
valued function restores the formn pointer of the form
named N to the initial character,

¥(dd N1N2,---} “delete definition” (two or more
arguments). This null-valued function deletes the forms
named N1, N2, cte, from memory and removes their
names from the list of names.

8§ (da) “deleie all” (one argumentd. This iill.vahied
functi . deletes all the forms in memory, aud removes
their names.

Arithmetic Functions, Trac does integer anthinetic,
taking decimal argunents, The decimgd sumerie digits
arc looked for at the 1ail endsof the argument strings. The
profix string ef the first argunmient string is preserved snd is
appended to the answer, while the prefix string of the
second argument is ignored. Negative quantities are
indicated by the ninus sign =", and initial reros are
ignored. Whenever the integer values become so large as
to overflow the capacity of the anthmetic processor, the
aoverflow value Z of the function is taken. The overflow
valuc is alwazys tieated s il it were prodiced by an zetive
function. The arithmetie functions are: ® (@f, D1 H2.7)
“add’, & (e, D1.102.Z) “sublract”, & (mi.DY 1275 ol
tiply” and & (dv,D1.IR,Z) “divide”. They all take four
arguments, In these functions, 132 is subtracted from D1,
and D1 s divided by 22, with the answer being the Jargest
integer enntained in the dividend.

Beolean Functions. Boolean Trac functions operate
on strings of bits (of value 0or 1), i.c., 05 Boolcan veetors,
The bit strings are represented by octal digits, with cach
digit representing three bits, Thus the bit «trings have
fengihs in multiples of three. The octal digits are focked
for at the tail end of the Ot and 02 strings, and any non-

octal prefix matter 1= deleted The {functions are:
¥ (b1,01,02) “Boolean union,” & (r01,02) “'Boolean
interseetion,” ¢ (50D “Boolean complimont,”™ & (hs,

D1a 2Boolean <hift™" and & (hr 11010 “Boalean 1n-
tate” The bit efrings are right Justified. In the Booloan
un‘on the shorter siring i filled ot with Jeading seros,
while in the Poolean intorsectinn, the looger sring s
truncated at the kf1 In the eomplemant, shify and rotate,
the longth of the tat string remains the same. Shift is ta
the Ieft Ly 1he nun ber of plarcs specified by the decinal
fr1 {with lcading peondecimal matter being dedeted) when

Volume @ Numhber 3 ' March 1966

-37-

D1 is positive, and to the right when DI is negetive. The
new positions ercated by the shift are filled with geros.
Rotate is also to the left or right, with positive or negative
values of D1, The digits displered from one end of the
veetor arce added 1o the place ercated at the =dher end.

Decision Funclions

#¥ (g, X1,X2 X3 X4) “cqquals” (Fve arguments). This
is a test for string cquality, If X1 is cqual to X2, the value
is X3; otherwise it is X4.

% (gr,D1,12, X1,X2) “greater than' (five arguments).
This is a test of numerical magnitude. If the integer
desimal number at the tail of string D1 is algebraically
gre. cr than the number at the tail of 172 the value is
X1: otherwise it is X2,

Ezlernat Storage Manage nant Funetions

(0N NELN2,---) “store Block” (three or more argu-
rents), This null-valued function assembles the group
of forms named N1, N2, cte., and stores them as a block
in anexternal storage aiva. The form nanes, segiment gaps,
ete., are all preserved. When the forms have been put into
the external storage, they are erased from form storage. A
new form is ereated with name N and with a string which
is the address of the block in extemal storage.

& 0N} vfeteh bloek” (two arguments), This wull-
valued funetion i the converse of the store block funetion.
The name N is the name of the block to be fotched, The
furction restores 1o form storage all the forms in the block,
complete with nimes, scgment gaps, pointers, ete, 1t does
not erase the block in eaternal storage, norihe form named
A\

((bN) “crase booek” (two argumenis). This null-
vihued funetion crases the form named N and olso the
group of forins in the block in external storage.

These fanctions peninit ferus (o be paoved to and from
the main memory and alw proteet the stored forms from
sccidental crasure. They alzo permit one to build a “stor-
age tree,” By this teehnique, a group of forms ean be
storol under a gronp name, a st of group names can Le
store] under a ~cclion nanie, and =0 on.

Diagnostic Functions

a0 N list names” (two arguments). The value
of this functinn L« the list of names in the name list, i.e.,
th - pames of all the forms in form storage. Fach name in
the s e string is preeeded by string N IFY i the char.
arter pait “carriage return, line feed” protectd by
double parentheses, the names will be listed in a columa.

initialization, Carriage return may be used instewd of
backspace,

(£f) “truce of”’ {one argument). Thisiza null-valued
function which terminates the trace mode without initial-
ization. Both trace on and frace off functions may be
placed anywheie in a procedure.

Examples of TRAC Procedures

1. The distinction between active and neutral funetions
is usually puzzling. Jn essence, the value from an active
function is rescanned, while in the neutral function it is
net. The following example shaws the aetion of the pm-
tective parenthesis, the nevtral and the & tive formis of the
function. Consider that both #(d8,A4,CAT)" and the
simple program # (ds, BB.(% (¢/,AA))Y liave been pre-
sented 1o the processor, Then,
¥ (pe (n (BB, wips, ¥ § ((1LBB)),
prints out, resjcctively:
$ (c},BB), 8 (cl.AA), CAT

2. When the processor is quite full, it is often desirable
to delete all forms hut one of a particular name, The
procedure & (dae, N, 8 8 (¢, N) % {da)) will accomplish this.
Here & 8 (ol N) reads the form N into the processor, and
itis held in the neutral string while all the forms in menmory
are erased. The form is then redefined with its original
name. In this example, segment gaps are Inst.

3. This and the follow ug example illuscate the ox
tension of Trac capabintics through defining and storing of
suitable procedures. The ealenlation of the factarial of a
number can te done by sin ple recurion:

& (de Factorial (e feg 1N 1,
(o (mt. X, 8l Pactorial, s fad X, - 1)}1)
)y wize Factorial Xy’
Then the call #/cl.lactoriai,3)’ produces the result 120.

4, Maay users will prefer ta have Trac supply its awn
sharp siens andd parentheses when ealling a procedure, The
following wilt do this:

s Odedinglich (8 (o,

8l mlra)(

Pefelnglishn)’
To start this action, we use & fol,English’, aral then if one
types in Factorial.y the response is 120 followe] by
carriage return, line fied, The action is terininated by
(dd English)".

Acknowle dgments. Special thanke are due to my ol
laborator L. Peter Deutsch for his assistance in the oo
velopnient and implementation of Trac.

REFEReNCESR

#(pa, ¥ (e}, BB)Y

A fpf.N) print fon” (two arguments). This causcs 1. Mocere, €. N TRAC, a teat handhing lyrguage Broeo (UM
;) . R . Lo - - s ey 1 X N
the typing «ut of the form named N with a comyplete 2ith Nar. Cof Clevelard, Aug Ix5, gop 220 20
i]'(A-tir of the locatio 1 ondinal values of th nent 2. TRAC—a procedure befinirg and evrcgtug sivom NMem
mdieation e location and ordinalvajurs o € SR V15T, Reekford Recesrch, Carndandge, June 1kl
gajs. 2 FPastaocon. D E. sanM Itsar. M D Macroeormpder pienld
& (In) “trare em” {one argnment). Thie nnll valued iheation ol SAP Mem Comput Tabh B Teleph e 1 ads
fanction initiates the trace mode in which, as the com- Murray L N J 8ot 3190 Unput hebet
pulation pmgresses, the neutral strings for cach fanction 4 MWHEor M D Vs 28V macra s atnctiact fop sy
typed out, Typing the backsparce key canses cvaluatio symbolic cxpreesionny Mem Compt Tan . Bell Telgpdoae
are typed ont, Typing the backepace key canses cvatuation Fabe . Murrax Wil N 3, 190 (Frpabliebad,
of I"w e tion. atel proserdation of the neutral string® g graucmar, C. & gerera) prrpose mazrogenerator, Comp ot J.
Q “enent. Typing auything other than backspace ~auscs 8,3 0,
me® Nnber3 - March 1964 { ,} Communications of the A0V 219
W

P
LRI

<

. RN RS
e 0

[UL
L OWAKTURS 4a5sD PE IN0) B
T, WS DA M TE L6010 L

ERIC

Aruiext providea by enc

——<

1] -38-

ern D S BEey
PN LT ™Y N

] ¥

L SN

NN
I RCINTLIS, R AD # e (7 OF B
RO TR AL

SRR FCINTTR o B 73O
OF T AT $20, WG LD TC RAR I

0]

O JOTA T Sl
NN PCINTER 1§ EF WD, I8

TN I WO AN M P,
1 TO s, &N‘\H’ [BT ¥
TeAl

o

T CwancTEe LiamiND 1Y

FR AN V1Y ®w
10 M LM, W)
t.(?

A TEXT

M ¥ T 18 8 ENE R - VLN L VSR T Y

J_l.l"

} a% « 'P\
e

LIS I

v;ff‘

1M G o D 18
~es-

&

I et e LT, @ g et
[1‘:- lgir't*ib e [rpeaibooviai
0o LTI
L3 -
Gl 3 B Y]
AT U R)Y AN,

LR L TR)

sl

TRAC

RECKONING AND COMPILING LANGUAGE

CEVELOPED Y CALVIN N MOOERY
[WE XS

LT N

A s T aisy o S 0

LAY TE AR
[ANINTHEN P o)
[
Tak

¥y a1

R IS

R N R
P o IS PN PPN,
L SN LN e R
Ao BT SC . LT LR T N B A
LAY WA N N e
EE AR AR W) 3
M pe SR A 1Y L
b SRR I e S L]
tagaft R I X & ER O

T R s

o

ERIC

Aruitoxt provided by Eic:

APPENDIX B

EL1ZA -- A Computer Prcyram for the Study of Natural Language

Communication Between Mar, and Machine
and

Contextual Understanding by Computers

Joseph Weizenbaum
Massachusetts Institute of Technology

fncluded with pernizsion cof the author

1.

K1L1IZA —A (fnmpulcr Program
For the Study of Natural Language
Conmrnnnication Between Man

And Machiine

Juskrne Wezpapary
Massacdhwsalts Ietilute of Tednology,® Canbiidge. Masx.

EUZA is o progrum opersling within the MAC time.shoring
system o) MIT which mukes certoin kinds of noturol longuage
conve:sotion between mon cnd computer possible. Input sen-
tences ore onolyzed on the bosis of decomposition rules which
are triggered by key words oppeoring in the inpul lexl.
Reiponses ore generoled by reossembly rules ossocioted with
selected decomposition rufes. The fundomentol technico! prob-
lems with which EUZA is concerned ore: (1) the identificotion of
key words, {2} the discovery of minimal context, {3) the choice
of oppropriote fronsformations, [4) genzrotion of responses in
the obsence of key words, ond (5] the provision of on editing
capability for EUZA “scripts”. A discussion of some psychologi-
col issues relevont to the FIZA opproach os well os of future
developments concludes the poper.

Introduction

L s said that to expluin is to explain avway, This maning
i bowhiene sawell fulfilled as in the amea of ¢coroputer
programming, cspaially in what is called Leuristie pro-
wtamnning aned artificial irteliigence, For in thase realins
machines are made to bhehave in wondrous ways, often
~uflicient 1o dazele even the most experieneed olecrver,
But once a particalar program i~ unmasked, onee its
inncr workings are explained in lsnguage sufficiently plain
to indiee unidorstanding, its magic crumbles away; it
stands neveaded s a mene eolleetion of procedunes, each
quite cotpi hensibles The obeerver says to himelf 1
contd Fonve writton that”, Wil that though! be moves the
prowtane in grestion fron the Tl markaed Sintelligenc,
to that ve-anved for carios, B o Te aliseussed onty with
peaple s onbghitened than he.

Weork et Vv mgc <opprated i part I Project AL
o N s b pe et spersqeid By ihe A et diseanch
Poopts Sgerav s Ity of Iwfora unle ttue o Ny o
frose et Corr vl Noymday Noop (I8 0§

. Ill Sttr b of Dhelpicd Lrgrrecan g

¥ains ",‘
% FRIRY Y e RN
A. G, OETTINGER, Editor

The object of iis paper is 1o eanse just sieelr aore-
evaluation of the program abont to e “explained”. Tew
progriams ever needed it morse,

ELIZA Program

FLIZA is n program which makes natural language
conversation with acompmter possible, Tis present imple-
mentation is on the MAC timesharing sy<teng ot ML
Tis written in MEAD-See [4) for the TBM 7098 1S nane
wis chosenr to emplisize that 0 may beinerementally:
improved by it nsers; sinee it< Baiguage abilitics iy he
contintially improved by o “teacher”, Like the Pl of
Pyggmahion fame, it e be nvede 1o appear evin e
vivilizid, the relidion of wppearance to rediny, however,
rendndng i the donain of the playwright.

For the present parpose it is suflicient 1o chatastenze
the MAC syt as one which perniits anindividial (o
operale o full seale computer from aorenmotely Tocated (vpee
writer, The individual operator has the llusion e he i
the solevi~er of the con puter complex, while in fiet othees
may Lo time sloring™ the system with Lim, What -
unportant here i< that the comprter cate read messages
typed on the typewriter and repond by writing on e
smneinstenment. The time Between the computor's
reeipt of somessage and the appearanes of Js meporea is
a funetion of the program controlling the diadogue woid of
such MAC syvtem parmeters as he mnaber of s
currently corresponding with the sy~tem. The-e Later
patamceters gonerally contribule o ittle (o e overall
response tine ol conversational intcraction with the
computer el never invalve thidy intolorable deiay s

When in conversation with ELIZA the ser tvpes
sottr ~tatcnent of st of ~tatements in natarad Taingvage
using nonmal prnetuation and <utenes dractuecs, Cldy
the question mark may not be need becnse 1 s inter-
proted as a lae delete charactor by the MAC systom, The
usaer's statement i< teviinated by o donbibe cardage tetumn
which xervis fo tum eontrol over to BEIZA FLIZN sy
analyzes the user’s stidement and wanersios same pesponse
which at types ont, Control 3« thercagain withe the nser,

Aty pical corveration is the following:

Moo are Sl abke

INCAITAT WY

Theser almw vl g g alut cetnelY o g or 2oy
CANDYOUTTTIINK OF v sPHoiHie b Nanrny

Welb iy Lot v e e s e bag
YOOI BOYRETEND MAOE Yol v ond

e s ove P sdopmosand o loof the tive

1AM ~OoREY TOHE A YOoU ALY npressaan

v
E MCI nnvoications of the AUV

a'

Volame € Sombare b Jaronars, [rn

10 tene. [an uvhappy.

DO YOU THINK COMING HERE WILL BELP YOU NOT TO
Bl UNHAPPY

T need game nelp, that mch seems eertain,

WHAT WOULD IT MEAN TO YOU [F YOU GOT SOME HELP

Perhups [eonld Jearn to get slong with my mother,

TELL ME MORE ABOUT YOUR FAMILY

My mother tihes care of me,

WHO ELSE IN YOUIL FAMILY TAKES CARE OF yOU

My fatter.

YOoult FATHER

Yo e ke any father in some ways,

WHAT ESEMBEANCE DO YOU SEE

Youiare not very aggeessive but I think yon don’t wam me to
notice thit,

WIHATMARES YOU THINK T AU NOTVERY AGORESSIVE

Yo dane argne with me.

WHY DO YOU THINK T DONT ARGUE WITH YOU

You ure ufraid of ne.

DOES 17 PLEASE YOU TO BELIEVE 1AM AFLIAID OF YOU

My father i afrsid of everybody.

WHAT LISE COMES T MIND WHEN YOU
YOUNR FALHER

Hulliex.

HOES THAT HAVE ANYTHING TO DO WITH TIE FACT
THAT YOUR BOYVFRIEND MADE YOU COME IIFRE

THINK OF

‘Fhe enpitalized lines are the machine responses.

The gross procedure of the program is quite simple; the
Text is read and inspeeted for the presetce of a Feyword.
H s<uch « ward is found, the sentence is transformed
according to a ride ascociated with the keyword, if not a
content-frce reinark or, under certain conditions, an earlicr
tran~formation is relrieved. The text so compuled or
retrieved is then printed out.

I detail, of course, the procedure sketched above is
vonsiderably more complex. Keywords, for example, may
have & RANK or precedence number, The procedure is
sepsitive to such numbers in that it will abandon a key-
word already found in the left-to right <can of 1he text in
favor of one having a higher rank. Alse, the procedure
recognizes nocommn or a period as a delimiter. Whenever
eitner one is eneountered and a kevword has already been
found, all subsequent text is deleted from the input mes-
sage. I na key had yot been found the phrase or sentence
1o the left of the delimiter (as well as the delimiter itsell)
is deleted. Asa result, only single phirases or sentences are
ever transforned,

Keywords and their associated tran<formation’ rules
constitute the SCRIPT for & particular clase of con-
versalion. An impartant property of ELIZA ic that a
script is data; ve, it is not part of the program itself.
Henee, FVIZA 35 not restricted 1o A particular set of
recognition paltcrns ar responses, inder) not even 1o any
specifie fanguage. ELTZA <oripte oxist (at this writing) in
Welshand Gennan as woll as in Englich.

The fundamental techmicaln obhfems with which F117ZA
must be preecenpiod are the follawing-

(1) The identification of the “mast important” keyword

Vike mond Crrandormaien ™ e naed i e grretic wrse tatber
than that goven it by Hlardis ard Ch nacky Bo liv guictic enntegte

A Q ‘.\lltﬂ'-(l 1/ January, 1964
ERIC

Aruitoxt provided by Eic:

xS

!

-40-

occurring in the input micssage,

(2) The identification of some minimal context within
which the chosen keyword appears; c.g., if the keyworl is
“you”, is it followed by the word “are'” (in which case an
asscrtion is probably being made).

{3) The choice of an appropriste trznsformation rule
and, of eourse, the making of the transformation itsclf,

(#) The provision of mechanism that will permit
ELIZA to respoend “intelligently” when the input 1ext
contained no keywords.

(3) The provision of machincry that facilitates editing,
particularly extension, of the seript on the seript writing
level,

There are, of course, the usual constraints dictated hy
the need to be economical in the use of computer time anel
storage space.

The central issue is clearly one of text manipulation,
and at the heart of that issue is the concept of the trans-
formation rule which has been sald to be associated with
cettain keywords. The micchanisms subsumed under the
slogan “transformation rule” arc a numbe. of Stiv func-
tions which serve to (1) deenmpose a data string according,
to certain criteria, henee to test the string ns to whether it
satisfies these criteria or nof, and (2) to reassemble =
decomposed string according to certain assembly spedifica-
tions.

While this is not the place to discuss these functions in
all their Jdetail {or even to reveal their full power and
generality), it s imporfant to the understanding of 1he
opcration of ELIZA to describe them in snme detail,

Consider the sentence I am very unhappy these days",
Suppose a forcigner with only a limited knowledge of
English but with a very good car heard that centence
spoken but understood only the first two words] am”.
Wiching to apjpxar interested, perbaps even sympathetie,
he may reply “How long have you been very unhappy
these days?” What he muct have dene is 1o apply a Nind
of template to the original sentence, one part of whicl
maiched the two wends 1 am® and the remainder isolated
the words “very unhappy theze days", Jle must alsn have
a reassenhly kit specifically associated with that femplate,
one that specifies that any sentence of the form [am
BLAN can be transformed 1o “How long have you beea
BLAH", independemly of the meaning of BLAIN. A
somewhat more complicated cxample s given by the
sentence [t seema that vou hate me’”, Here the forvigner
undetstands orly the weids “you” ard “me"; ie., he
applies n template that decomp s the scntence inta the
four parts:

11 [t gecn that 12iven 3 hare 4me

of which only the second and fourth parie are undore oo,
The nasemtdy mle miglt then e “What miakes yon
think T hate you™, ie, ot wight thron anay the Lot
component, franslate the tan known words (yon™ tn
“I" and “me’ to tyon™) arad tack on a dak phrase
{What ninkes you think) to vhe front of the rveanstnu tinn.
k

Communicalion< of the A(M

—41-

A formal notation in which to represent the decomposition
template is:

(0 YOU 0 MI)
and the reassembly rule
(WHAT MAKES YOU THINK T 3 YOU),

The “0” in the decomposition rule stands for “an ir-
definite number of words” (analogous 1o the indefinite
dollar sign of Comit) [6) while the *3” in the reassembly
rule indicates that the third component of the subject
decomposition is to be inserted in its place. The decom-
position rule

(0 YOU 1 ME)

would have worked just as well in this specific example, A
nonzero inleger “‘n™ appearing in a decompoasition rule
indicstes that the component in yuestion should consist
of exuetly “a" words. However, of (he 1wo rules shown,
ouly the fint would have matched the sentence, “It seems
vou liste and love me," the sceond failing because there is
more than one word between *you' and “me'.

~

T

L I N I '

Fi10.1. Keyward and rule list struciure

1n KLIZA the question of which decomposition rules to
apply (o an input text is of course a crucial one. The input
sentenice might have been, for example, 1t scems that
vou hate,” in which casce .he decomposition rule 0 YOU
0 ML) would have failed in that the word “MIE” would
not have been found at all, let alone in its asagned place.
Somie other decomposition rule woull then have to be
tricd and, failing that, «till anothier until & match could
be mrule or a total failure reported. ELIZA must therefore
have a mechanism to sharply delitnit the set of decom.
position rules which are potentially applicable to a cur-
rently active input sentenee. This i+ the keywonl mecha-
nism.

An input =entence is scanned from Jeft to right, Fach
word is lookad up in a dictionary of Feywonls, If a word
is identificd as a keyword, then (apart from the issue of
preccdence of keywords) only decomposition rules con-
taining that keyword need to be tried. The trial sequence
can oven be partially ordered. Tor exanmple, the decom-
pocition pale (@ YOU 0) ascociated with the keyword
“YOU™ (ard shecomposing an input sentence into (1} all
words n front of “YOU™, (2) the word “YOU”, and (3)
all wonle following “YOU™) should be the Jast one tried
since it is hound to sucered.

Two problons now arise, One <tems from the fact that

almost none of the words In any given sentenee are repre-
sented in the keywon! dictionary. The other is that of
“associating’” both decomposition and reasscmbly rules
with keywords, The first is xcrious in that the determina.
tion that a word is not in a ditionary muay well require
more computation (1.c., Gine) than the location of « word
which is represented. The altack on bath probleins begins
by placing both a keyword and its associated rules on u
list. The basic format of a typical key listCis the following:

(K (D)) () By) - Ry, w))
(D) (Ray) (Ry) - Ry)

(DY (Re.)) (B2 - (Ra o))

where K is the keyword, 1, the ith decomposition rule
associated with K and Ky, ; the jth reassembly rule asso-
cinted with the fth decomposition rule,

A common pictorial representation of such a structu.e
is (he tree dingram shown in Figure 1. The top level of
this structure contains (the keyword followed by (he names
of lists; cach ote of which is again a list structure beginning
with a decomposition rule and followed by reassembly
rvles. Sinee list structures of this type have no predeter-
mined dimensionality limitations, any number of decom-
position rules may be associated win a given keyword and
any number of reas<cmbly rules with any specific decomn-
position rule. SLtp i< rich in functions that scquence over
struclures of this type cfliciently, Honee progronip
problezns are ininintized.

An ELIZA seript consists minin!y of a et of li-t ~true-
tures of the type shewn. The actual keyword dictionary is
constructed when ~uch a seript i< first read inte the
hitherto empiy progran. The busic stractural omponent
of the keyword dictionary 35 a vector REY of coarnently)
128 contiguous eomputer words. A< particnl e hey Lat
structore is read the keyeonl Woat s tory is rulonezed
(hashed) by o proeedare that prociices fearrentlyy o 7
bit integer “i" The wonl Calways”, for example, yiekls
the integer . KEY(D, ie, the ith wonl of 1he vector
KEY, is then examined to determine shethor it contains
a Yist name, 1 01 does not, then an empty Bat s oroated,
ite name ploecd in WEY (0, and the key list <rructure in
question plaeal on that lict, If KEY (0 already conmains o
list £.arre, then the name of the key hst <tiueture is placed
on the bottom of the st named in KEY G} Te Targest
dictionary so far attempted contains about 50 koy words
No list named in any of the worde of the KLY victor
conlains more than two key hist strictunce,

Every word enconntered in the sean of wcinput teat,
i.c., duting the actual vperations of ELIZ A, is ran-lomize d
by the samie hael ng algarithi as was oniginally gpliedto
the incoming kheyvords, havre v lds aninteger wlhad
pointe (ke otiy pacable Lot anwture which could
potentially contain 16" w T a3 a Kkevnead, Taen hen,
Onl)' the taps of any by st siraeinn s th Loy be foe 1l
there o be intorog od todeterine swhothar or vot 3
kevaond has been forrds By vintge of e v asonce Lot

VYolume 9, Number 1 Janoved, 1o

O
E lC Communications af the ALV

NS
-

sequencing operalions that Spir mukes available, the
actual identification of u keywerd leaves as its principal
prodict a pointer to the list of decompositien (and hence
reassembly) rules aseocinded with the identified keywerd.
One result of this steategy is that uften less time is required
to discover that a given word is not in the keyword dic-
tionary than to locate it if it is there, However, the location
of & keyword yields pointers to all information associated
with that word.

Some conversational protoenls require that certain
transformations be marle on certain words of the input text
independently of any contextual considerations. The first
conversation displayed in this paper, foi example, requires
that first person pronouns be exchanged for seeand person
pranouns ausd viee versa theoughout the input text, There
may be further transformations but these minimal sub-.
stitntions are unconditional. Simple substitution rules
ought nnt to be clevated to the level of transformations,
nor shiould the words involved be forced to carry with them
wll the structure required for the fully complex case.
Furthermore, unconditional substitutions of single words
for single words can be accomplished during the text sean
itself, not as a transformation of the entire teat subsequent
to sanning. To facilitate the realization of these
desiderita, any worl in the key dictionary, i.c., at the
top of a key list strueture, may be followed by an equal
sign followed Ly whatever word is to be its substitute.
Tranformation rules may, but need not, fo'w. If none
do follow such a ~ube-titntion rule, then the substitution is
made cn the fly, ie., during text scanning, but the word
w question is not Wlentificd as a keyword for subrequent
purpores. Of «ourse, a word may be both suhbtituted for
and be a keyword as well. An cxample of a simple sub-
slitntion is

(YOURSELY = MYZELF),

Neither “yourse!f” ror 'mysel{” are keywords in the
particalar script from which this example was chosen.

The fact that keywaor's can nave ratks or precedences
has slrealy been mentioned, Th.e noed of a ranking mecha-
nism may be established Ly an example Suppose an input
semtrenn e is “T know everybody laughed at me” A <cript
may tag the word 17 as well as the word “everybody”
as . keyword. Without diffcrential ranking, “1'" occurring
first wonld determire the trar.sformation to be applied.
Aypiealrecponse might be ' You sax you know everybody
lIaughed at you.” Rut the important message in the input
sontegee hegins with the word “everyhodv ™' It is very
often true that when a person spweaks in terms of universals
such s “everybody”, Calways™ ar 8 nobody’! lie is really
refurring to <ome quite speeific event or person. By giving
“ceerybody™ a higher tank than 17, the response “Who
in 1 aticular are yor ' Fnk g of* may be getorated.

The spxefic mechan en employed in ranking is that the
tanh of eveey Kevwenl eneounterad (abeetce of rank
i phs rank equals M) s compared with the rank of the
highest ranked Levwond alne Ay s, 1§ the ronk of the

iE l{l‘ic Sumber 1 Januars, s

FalTo: Poiod b EHG a.

—42-

new word is higher than that of any previously encoun-
tered word, tne pointer to the iransformation rules
associated with the new word is placed on top of a list
called the keystack, otherwise it is placed on the bottom
of the keystack. When the text scan terminates, the key-
stack has at its top a pointer associated with the highest
ranked keyword encountereil in the scan. The remaining
pointers in the stack may not be menotonically ordered
with respeet to the ranks of the words from which they
were derived, but they am nearly so—in any event they
sre in a useful and interesting order. Figure 2 is a simpli-

E-fuib e

'-:_:L}——-Q-l o et)—vu o
Deere wangan
R }"""(o soctend M wirty
C_ﬁ" el Hhsvnk

“o

—J—
— w3 e N Ou'stt wand 0t
tuewe ::;-n-'».--n
s —
e ——

"Ly
[F e Frecetr~a E‘;-:{‘-“ P8 poater %y
o SR "o Wy v
b LTULE brr i J

Fis. 2. Basie flow dizgram of heyword detection

fied flow diagram of keyword detection. The rank of a
heyword mu-t, of course, also be associated with the
keyword. Therefore it must appear on the keyword list
structure. It may be found, if at all, ju-t i1 front of the
list of transformation rules associated with the keywonl,
As an example consider (he worl “NIY™ in a particular
seript. 11z keyword list may be as fol'wns:

(MY = YOUR 8 (trarsformaticn ri'en)).

Such a list would mean that whenever the wonl “MY" iz
cnrountered in any text, it would Le replaced Ly the word
"YQUR". Its rank would be 5.

Upon completion of a g ven text scan, the keystack is
cither empty or contains pointers derived from the key-
words found in the fext. Fach of such pointers is actually a
zequence reader-—a Seir mechanisni which facilitates
seanning of lists—pointing into its particular key list in
such a way that onc sequencing opcration o the right
(SEQLR) will scquence it to the first st of tran<formation
tules assaciated with its keyword, e, to the lict

WD) Ry D (R Ry R,

The top of that L, of course, is a lizt which scrves a
decomposition rule for the subject fext. The top of the
keystack containe the Arst gointer ta be actiy ated
Tho decompasition rule Iy associzted with the keyword
K, e, [(DY, K, 32 now tried. 10 1oy fail hawever. Tor
namplo, suppoce the input toald wite

Yoot are wero belpf

fommuniiations of the A 39

43-
The keyword, say, is “you”, and {(F), you) is
(01 remivd you of 0,

(Reeall that the *you' in the original “entence has already
beet replaced by “1"7 in the text now analyzed.) This
decompasition rule obviously fails to match the input
sentenee. Should {(D)), K fail to find a match, then
'(1y), K} is tried. Should that too fail, {(Dy), K} is
attenipted, and <o on. Of course, the sct of transforn ation
1les cim be guaranteed to terminate with a decompo: ition
vule which must mateh. The decomposition rule

KM
will mateh any text in which the word K appears while
[{4J]

will mateh any text whatover. However, there are other
wayx to leave a particular <t of transformation rules, us
will iw shown below. 1'or the preseat, suppose that some
pratienlar decompasition rule (1,) has matched the input
tent. (1), of course, was found on a Yt &f the form

((D.)(R| 1"(’{-,&) Tt “’\’-. u.))-

Sequencing the reader which is presently pointing at
()Y will retrieve the reassembly mile (R,) which may
then be applied to the decomposed input text to yield the
output message.

Consider again the input text

Yot are very helpful

in which “you" i~ the anly key wonl, The scntence is
tran~formed during scanning 10

[are very helpful

1)), you} i= (0 I reminel yaur of 0)"' and fails tomatch
ns already discussed, Hawever, 1), youl i« @ are Q)"

and obviously matches the texe, decomposing it into the
constituents

Hten piy (21 31 are

th ey helpfal
Pty Y, youl s

Mhat makea yvouthp k e b
Honee it produces the gatpuat test

Wit makes vorp think Dang very belpfal,

Having produeed i, the integor Uis put in front of (Ry)
«athat the rrandfonantion mle hstin guestion now apyxars

o=
CDMR R e 1By).

Noat tine (DN, K watdics aninpat tent, the reassembly
ik Ry) will te apphicd and the integer 2 will eeplace
the 1o Muer iRy o)) has boean exerdised, (Ry.) will again
te incokad, Thius, aftee the sy-tera has boen in use for o
tne, evary decomposition mile which has matched some
inpmt taat has associated with it e integer which corre-

that decomposition rule. This mechani=m insures that the
complete sct of reassembly rules asaciated with a given
decorrposition rule is eycled thraugh before any repetitions
oceur,

The system deseribed w0 far is exsentially one which
selects a decomposition rule for the highest runking key-
word found in an input text, attempts to mateh that fext
according to that decomposition rule wnd, fuiling to make
a nuteh, scleets the next reassembly rile asociated with
the aitehing decomposition rule nud applics it to generate
an autput text, It is, in other words, a system which, for
the higlest ranking keyword of & text, scleets a specifie
decomposition snd reassembly rule to e used in feeming
the output message.

Ware the system to remain that sinple, then keywords
that required identical sets of transfornation rules would
cach require that a copy of these tran~lonmation rules te
assaciated with them. This would be logically ~ound bt
would complicate the 1a-k of seript writing atd would ulo
make unneees=isry storage demands, There are therefare
speciat types of decomposition and assenbly rales char-
acterizad by the appearance of =" at th iop of the
rule list, The wonl following the equal sigr indicates which
new set of tran~formation rules is to be applicd. For ox.
ample, the keyword “what”? may have associated with it
a tran-formation rule set of the form

(10) (Why o you ask) (Is that an important questiony ..)

which would apply equally wdll to the keywords “how™
andd “ahen”. The cntire keywond list for “how™ may
therefore be

(How (=Whaty)

"

The keywonls “how ', “what” and “when™ may s be
made to form an equivalence elass with respeet 1o the
tzan<formation rules which are to apply to them,

In the above example the rule “(=what)" i n the
place of a decompasition rile, although it canes no
decotnpasition of the relevant texts TCmay sl appeear,
hawever, in the place of a reacsanbly rule, Yor ovaniple,
the keyword “am™ may have among athiers the follow ing

tran~fonnation rale et associated withat:
(0 are vt @4 (Dhs von believe yevare 40 L (=whate o)

(1t i< here assumed that “are’ has boen sulbstitited for
“am’™ and “you” for “17in Qe imtiad tant seand Then,
the inpust teat

Am L sick
would eheit anlier

Doyen beliene v are o Y
ar

Why do goe aek

.|,~pln.|”,g on how many tine - the gewn ral form Dol
already econrnsl

»-Q----‘ to the st reassemmbly mike el in conmection with Urelir a0l othir condditions it moav b desr B g
EMC Coammunications of the WU Volame @ Number ! January, 194

P
A
1

2

~44-

perform a preliminary transiormation on the input text
before subjecting it to the decompositions and reassemblies
which finally yield the output text. For example, the
keywond you're” should lead to the transformation rules
associated with “you’ but should first be replaced by a
word puir, The dictionary entry fcr “you're” is therefore:

(you're :- I'm ({0 I'm 0) (PRE {I AM 3) (=YOU))))

which has the following ffeet:

(1) Wherever “you're” is found in the input text, it is
replaced by “I'm™,

(2) I “you're” is actually sclected as the regnant
kevword, then the input text is decomposed into three
constituent parts, naunely, all text in front of the first
oceurrence of “I'm”, the word “I'm' itself, and all text
following the first occurrence of “F'm",

(3) The reassembly rule beginning with the code
"PRE" is encountered and the decomposed text re-
as<vibled cueh that the words * T AM'" appear in front
of the third constituent determined by the carlier de-
colpasition.

(1) Coutrol is transferredd, so o speak, to the trans-
formation rules associated witi the keyword “you,
whene further decompositions etz. are altempted

It 35 1o be nated that the st

(PRE (I AM 3} (=YOU),

it Ingically in the place of a reassenbly rule and may
therefore be one of many reassenibly rules ascociated with
the gven decornposition,

Another form of reassembly rule is

NEWKAY)

which s rves the cags in which attemyis to mateh on the
cavntly cegnant kevword are to be given up and the
oatire decompasition and resssembly process is te start
wigain on the hosis of the kevwernd to be found in the
keastack, Whenever this rile is inveked, the top of the
hevstack is “popped up” onee, ie., the new regnant key.
worl recoverad ard pemeed from the keystack, and the
cutite process ronsiiabod ar if the initinl text scan had just
ternmeated Fhis e hanism mokes it possible to, in cffect,
test an hev phrogre us oppesl to single key wonds.

A sorious prolten, which emaing to be discussed is the
tewtion of the ssetemn in cas no Keywords remain to
serve #8 transformastion triggers. This can arise cither in
s the Keystack is eanpty when NEWKEY itinvoked or
wle he ingsat 1est centained ne keywords initiaily.

The simpdest medckavis~s gapplicd i< in the form of the
gixv il regrrval oy aond "NONE” which must be part of
At s ript The s riptw stor nrust azsaciate the universally
vt il esitior mds (03 wi hiit and follow this by
atany content free Foanarkain e formoof tearsforma-
tion rales as he ploawc. (Exaaph am: “Please go on™,
"That's vary infon<tin g™ and “L &)

There i, honcovir, another mechasiom which causes the
system 1o respond mnee spevtacilarly in the absence of a
Lew, The word “MEMORY" i< unc'ber resctved pcwldo
hes l\n:{ The key Tist structnre associated with it differs

\EMC"\.“MI'" I/ Yenuary, 1964
a

4,

from the ordinary one in some respeets. An examnle
illuminates this point.
Caonsider the following structure:
(MEMORY MY
(0 YOQUR O = LETS DISCUSS FURTHER WHY YoU R 3
(0YOUR 0 = EARLIEKR YOU SAID YOUR 3}

The word “MY?” {(which must be an ondinary kevwor!
as well) has been selected to serve a speeial function.
Whenever it is the highest ranking keyword of « text one
of the transformations on the MEMORY list is randomly
sclected, and a copy of the text is transformied ceordingly.
This transformation is stored on a first-in-first-out stack
for later use. The ordinary pi.cesses already desceribed are
then carried cut. When a text without keywords is cn-
cour‘ered 'eter and a cerfain counting mechanism is in a
particular state and the stack in question is not cmpty,
then the transformed text is printed out as the reply. Tt
is, of course, also deleted from the stack of such trans.
formations,

The eurrent version of ELIZA requires that one keyword
be associated with MEMORY and that cxactly four
transformations accompany that word in that rontext. (At
application of a transfeimation rule of the form

(LEFT ITAND SIDE « RIGIHT IIAND SIDE)
i3 equivalent to the suc.ess’ve application of the two forms
(LEFT HHAND SIUE), {RIGHT HAND SIBE))

Three more details will complete the formal description
of the ELIZA program.

The transforn.ation rule mechanism of Site is such that
it permits tagging of words in a text and their subsequent
recovery on the basis of onc of their tags. The keywond
“MOTHER” in ELIZA, for example, may be identified
85 8 houn and as a member of the elass “family™ as follws:

IMOT'IEL DLIST (NOUN FAMILY).

Suck tagging in no way iilerferes with other inforniition
(c.g., rank or tran<formation rules) which may be asso
ciated with the given 1ag wond. A decompesition tule may
ctotain & matching eonstituent of the form { TAGL
TAG2 - -+) which will match and isolate a word in the
subject text having any one of the mentioned tags 1f, for
example, "MOTHER" iz tagged ss indicated and the
inpit text

CCONRIDER MY AGED MOTHEDR AS WELL AS ME™
subjected to the decomposition rule
ANYOUR 0 G FAMILY: €

(remembering that “MY " hashevn noplassd By 3 OU R 0,
then the decomipozition would be

1 CONRIDER 2 YOUR B AMGED
S AR WELL AS ME

A MOTER

Anottier flexibility inhercnt in the Sure text manla
tien mchanism underiying ELIZA i tha orirg of
matching criteria it permitted in decompnsition ke,
The above input text woull have boen decomposal

Commnniralions of The \(M [}

Q
E lC Com nunitations of the \AUM

- 45
precisely as stated above by the decomposition ruie:
O YOUR 0 (+FATUHELR MOTHELRS 0)

which, by virtue of the presence of “o’ in the sublist
structune scen above, would huve isolated cither the word
“FATHER" or *MOTHER” (in that order) in the input
text, whichever occurred first after the first appearaniee of
the word “YOUR™,

Finaliy, the seript writer mnust begin his script with a
list, i.e., 0 message enclosed in parentheses, vihich contains
the statcment he wishes ELIZA to type when the system
is firet londedd, This list may be empty.

Fdditing of an ELIZA script is achieved via appeal to a
conitextual editing programy (ED) which is part of the
MAC hibrary. This program is called whenever the input
text to ELIZA consists of the single word “LDIT".
FLIZA then puts itself in a so-called donnant state and
presents the then stored seript for «editing. Detailed
discription of 1) is out of place here. Suffice it to say that
ehanges, ndditions and deletions of the seript may be made
with considerable ¢fficiency and on the basis of entirely
contextual cues, ie., without resort to line numbers or
any other artificial devices. When aditing is completed,
ED is given the comunand to FILLE the revised script. The
new seript is then storsd on the disk and read into FLIZA.
ELIZA then types the word “START” to signal that the
converation may resume under eontrol of the new seript.

An important con<equence of the editing facility built
into FEIZA is that a given ELTZA <eript nesd not start
out 10 be o large, full- blown scenarin. On the contrary, it
<should begin as a quite modest st of kevwonls and
transformation mules and permitted to be grown and
molded as experience with it builds up. This appears to
be the beat way 1o use a truly intcractive man-machiue
facility---i.e., not as a device for rapidly debugging a code
represcnting a fully thought out solution to a problem, but
tather a2 an aid for the exploration of problem solving
ttrategics.

Discussion

Av this writing, the anly scrious ELIZA seripts whieh
exi~t are some which cause 1LLIZA 10 respond roughly as
wouli cottain prychothcrapiste (Rogerians). VAIZA
performs best when its human correspondent is initially
instrusted ta “talk” to it, via the typewriter of coure,
just as ane would ta a peychiatrict. This mevde of con
versatione was choson because the peyvchiatrie interview
is one of the few oxamples of eategorized dyardie natural
lapgu go commutieation in which ane of the participating
pair = fre 1o asume the pose of Lnoning alnioest vothirg
of the veal workd I, for cxample, ofie were 1o tdl a ey
chintrit 1 went for a Yo g boat nide” and ke nocparde-t
STl pre ateut bt one woukl not acsime that be knew
nothing sbout baate, but that he had come purpese in o
dineti g the cubreyuent converation, Tt i< important (o
pete that this acouption i ene made by the <peaker.
Whether 1t s moalistiec or 1ot i an altogether «cparate
question. [any case, it has a crucial peychological utility

4,

in that it serves the speaker to maintain his sense of being
heard and understood. The speaker further defereds his
impression (which even in real life may be ilhisoryd by
attributing to Lis conversational purtier all <orts of baek-
ground knowledge, insights ane ressoning ability. BBut again,
these are the speaker’s contribution to the conversation,
They manifest them=elves inferentially in the interpretations
he makes of the offens responsc=, Prom the puncly teehnical
programming point of view then, the psyehintne inicivioy
form of an ELIZA script has the advintage that it ehini-
nates the need of <toring explicit infonnation about the
real workl,

The hman speaker will, as has been said, contribute
muclh to clothe ELIZA'S responses in vestments of
plausibilite. But e wilt not defend his illusion (e he is
being understood) against all ecld<. ITn human conversation
& speaker will make certuin (perhaps generons) assnimp-
tions about his conversational partuer. A< long s 0
remains possible to interpret the latter's nsponses coa-
sistently with those assumiptions, the speaker’™ hmage of
his partner remains unchanged, in particalar, undamnaged.
Responser which are diflicult to so interpret miay well
result in an enhaneceraent of the image of the partuer, in
additional rationalizations which then make mon: oo
plicated interpretations of his responees reasonahle,
When, however, such ratinnalizations beeame 160 assive
and even self contradictory, the entire iinage miay erumble
and be replaced by another (“1e is not, after all, as sman
as 1 thought he was™). When the converational partier
is a machine {the distinetion hetween maehine anel progrim,
i= here not wseful) then the idea of eredifdity may well be
sulntituted for that of plaugidility in the above.

With ELIZA as the hasie vehiele, experiments piny be
sct up in wWhich the subjects Aind it credible to bolicve that
the responses which appear ou his typewriter are goncr-
ated by a human sitting at a simifar instrument in aother
room. How ninst the senpt be written in onler 1o maiatain
the crehibitity of this idea over a long poriod of time?
How can the performance of FLIZA Le svctematicodly
degraded in order to achicve controlled and pradictable
thresholds of crodibility in the subjeet? Whot, in ail this,
is the mle of the :nitial inctruction to the suhjcet? On the
othor hand, suppose the subject is told he is cemmunicning
with a machine, What i he led to believe about the
machine as a result of his convemational experienee with
i? Sore rubjects have been very hand to convinee that
ELIZA (with ite present script) s e bumen, Thic is g
striking form of Turing's test. What expernental do< go
worthd pake 1t more nearly rigapous and airtoht?

The whole dssue of the encd bality tto b of
machine nutput demands jnve~t gatinng, Tipertant s
cistons ipasingly tend to b pake in po-prne o come
prater output. The ultinately nosponahle human e
preter of “What the machine <ay~" is. et unhle the
correspandent with FLIZA, constantiy frosd with the
need to make cnshibality jodgwentss RN b af
nothing elze, how eacy it i< to cvate wed 1dntain the
ilhicion of undentanding, henee praheps of prtonae

Volume @ Number 1V /7 Javnars, 14

~46-

deserving of credibility. A certain danger lurks there,

The idea that the present ELIZA script contains no
information sbout the real world is not entirely true. For
examyple, the transformation rules which cause the input

Iverybody hates nie
1o be transformed to
Cun you think of wnyone in partienlar

and uther sued are bused on quite specific hy potheses about
the world, The whole «eript canstitutes. in a loose way, a
model of certain aspeets of thie woild. The act of writing a
script is n kind of programminsz act and has all the advan-
tages of programming, most particularly that it clearly
shows where the programuner’s uniderstanding and com-
mand of his subjeet leaves off.

A large part of whatever elegance may be credited to
ELIZA lics in the fact that 11LIZA maintains the illusion
of understunding with o little machinery. But there are
bounds on the extendability of ELIZA’s “understanding”
power, which are a function of the ELIZA program itself
and not a fu etion of any script it may be given. The
crucial test ol understanding, as every tcacher should
i'now, is not ‘lie subject's ability to continue a conversa.
tivg, but to draw valid conclusons from what he is being
told. In onder for a computer program to be able to do
that, it must at least have the capacity to store sclecled
parts of its inpute. ELIZA throws away each of its inputs,
except for those few transformed by means of the
MEMORY machinery. Of course, the problem is more
than onc of storage. A great part of it is, in fact, subsumed
under the word “selected™ used just above. ELIZA in its
usc o far has had as one of its principal objectives the
¢ necalment of its lack of understanding. But to encourage
its conversational pariner to offer inputs from which it
can select remedial information, it must recal its mis.
understanding. A switch of objectives frony the conceal-
ment to the revelation of misunderstanding is secn a8 a
precondition to making an ELIZA ke program the basis
for an cffective natural language man-machine com-
munication system.

One goal for an augmented ELIZA program is thus a
svatain which already has acerss to a store of inforination
about ~cire aspects of the real world and which, by means
of conversational interaction with people, can reveal both
what it knows, ie, behave as an information retrieval
system, amd where its hnowledge ends and needs to be
avgnicnich Hopefully the auginentations of i1s know ledge
will alko be a diredt consequence of its conversational
avpericnce, It is preciscly the prospect that scch a program
will converse with ninny people and learn son.~thing from
cach of them, which lead< 1o the hape that it wi prove an
inturesting and (ven uw ful conversational partm r.

One way to state a shightly diffcrent internediat: goal e
t3 «ay that DLIZA should e given the power to slonly
bull a model of the subjest conversing with it 1f the
sibyect tientions 1121 bie is not married, for examole, and

h“i’ avahs of hiz wife, then ELIZA should be able to
LS

make the tentative *ference that he is either a widower
or diverced. Of course, he cou'd simply be cerfused. In
the long run, ELIZA sheuld be able to build up = belicf
structure (to use Abelson’s phrase) of the subject and on
that basis detect the subject’s rationalizations, contra-
dictions, ete. Conversations with such an ELIZA would
often turn into arguments, Important steps in the realiza-
tion of these goals have wlready teen taken. Most natable
among these is Abelson’s and Carroll’s wark on simulation
of belief structures (1.

The script that hos formed the basis for most of this

discussion happens to be one with an averwhelmingly
psychological erientation. The reason for this has already
been discussed. There is a danger, however, that the
example will run away with what it is supposed to illus-
trate. It is useful 1o remember that the KLIZA program
itself is merely a tranclating processor in the technical
programming scnse. Goarn [2] in a paper on language
systems says:
Given a language whiclgalrealy possesses seiantie contert, then
A translating processor, even il it operates only ayntactically,
generates corresponding expressions of anather language to vhich
we cah attribute as “meanings” fposeibly multiple--the trauslator
may not be one to ane) the Usemantic intenta® of the wencrating
souree expressions; whether we find the result eonsistent or useful
or both is, of course, annther problem. 1t is quite possible that by
this method the sams syntactic objeet langusge ean be usefully
assigned multiple Incauinge for each expression , .,

It is striking to note how well his words fit ELIZA. The
“given language"” is English as is the “other language”,
expressions of which are generated!. In principle, the given
langiage could as well be the Kind of English in which
“word problems” in algebra am given to high schoal
students and the other language, a machine code allowing
a particular computer to “sclve” the stated problems.
(Nce Bobrow's program STUDENT [3).)

The intent of the above remarksis ta further rob ELIZA
of the aura of magic to which its application to psycho-
Jogical subjcet matter has to tome extent contributed.
Seen in the caldest possible Tight, ELTZA i< a translating
proceasar in Gorn's sonse; howcver, it i one which has
been esperially onnetnicted 1o work well with natural
language text.

I EFERENCES

1 ArEeoN, ROP, At Cagrear, Jo D0 Conputer sisnulstion
of individus! bebief cystene awer Belar, Koo @ 0\ av 1005y,
24-20.

2. Gory, S0 Semintie relatinneddpa in andiguonedy stranfied
Ianguage systena Paper precerted v Tag Collog Alarlavie
Vorguistica ard Aurematie Theoray, Hebren U od Jenuealem,
Aug 104,

A PRargow, PG
Tem eolvirg cveem. et e, Nyt
Cambridge, Myee Ty

4 Wrenaavw, Jo o Nvmmetrie Lt pooceesor
iNept. 1 324 3

5 Moakns, C. €7 ontdntered Thorapa Cusriet Practce, Tmphie
crtprmvand Treovy 1hosghrcg MYan Boeviy

6 YNvE, S (OUET Qtregrermirg Yansal, MAT Preee, Cams
Lridge, Mace | 10}

Naturallargage inpat foracompater proch
Ivpy, MIT

Comr, OV 6,

[

Conymunications of tle M 1

EMC S/ Number 1 Javuary, 1066

(1 h‘

A

-47-
APPENUIN. An ELIZA Scripl (WOULD YCU WANT TO NE &)} (YOU &ISW 1 WOULD ELL YOU TOU JEE M)

CWHAT HOULD (T NEAN IF YOU WERE N) (sWHAT))
£40) (WKY DO YOU SAY "AN’) (1 DON'T UNDEIAS?TAND TwAT)))
(ARE ((f akE Q)

(MOW 00 04U DO, PLEASE TELL MZ YOUR PREALIN} (XNT ARE YOU INTERESTED IN WMETHER | AR 4 0% WNOT)

STARY (MOULD YOU PREFEN IF o WEREN'T %) (PERMAPS | AM & IN YOUB
(SGRRY (£0) (PLEASE CON'T 2POLIGI E) FANTASIES) (0O YOU SOMEVINES THINK § 44 &) (sWNATY)

(APOLOGIES ARE WOT WECESSOAY) (WNAT FEELINGS (L0 ARE B) (DID YOU TWINK THET MIfWT BT BV 3)

DO YOU WAVE wWHEN YOU APOLOGIZE) (1'VF TAIM YDU (WOULD TOU LIKE 1T LF TKEY wERE NOT §) (wRAT (F TMEY WiRE MT 3)
THAY APOLOGIES AFE MOT REQUIRED))) (POSIHILY THEY ARE 3)))

(OOKT » PCA'T) (YOUR o MY (0 MY Q) (wWWY ATE YOU CONCERNEN OVER MY §)

(EANT o CaN'Y) (WHAT ABNUY YOUN OwN §) (ANF you WORRIED 200UT SOMENE ELSES §)
(WOKT « WON'T) (REALLY, ®Y 3}))

CRENERBER § tWAS 2 (0 WAS YOU v)

(WHAT (F YOU WERE o) (DO YOU TWIRNE YOU WI®F 0)

(WERE YU &) (whAT WOULD 1T MFAN (F YOU WFRE 0)

(WHAT 0OFe ' b ¥ SUBGEST TG vOUR CownaT)!

(o0 Tou wald B)

(WERE YOU MEALLY) (wHy O YOU TFLL ME YOU WEBE & NIW)
(WERE YOU RESLLY) (why DO YOU TELL ¥E TOU WERE A wCW)
POFRWAPS) ALREADY Kufo YOU WIRE N))

(C0 WAS) 0) (WDULD YOU LIRE 10 ATLIEYY) vas)

(XMAT SLGCESTS THal (| WA &)

(MMBY DO YOU THINKD (FeR¥APS 1 WAS \)

(wHATY |F 1 MaD PEEN M1}

CCh) (nEwcEY)))

(KERE o WAS (w2$))

(ME » YU}

CYOU'RE » 1 (00 1'm) (PRE (1 2%F 3) 2o70U0)
GO YOU'RE ((0 YOU'RE 03 (PRT (¥0y 30L 3) (=12}))
(MYSELE o YOUNSELF)

CYOURSELF = MYSELF)

ODTREL DUISYE/NOLN FamiLYY)

(X% » MOTHER BLISTL/ FANIRY))

(CAD o FRTHER DLIST(Z FANILY))

CEATHER OLESTO/NOUN FawILY))

{SISTER CLISTCZFARILY})

CIROTHER QUIST(/FANILY)}

GFE DLISTU/EANILY))

CCWLLUREN CLISTEZFARILY))

0 Yo

COD YOU (o WANY NEEO) @) (WeaT w2ULN AT #TaN 10 90y IF ¥2y A0T W)
(Wuy DO YOU WART N) {SUPPOSE T2U GO b 300N) (WY

IF TOU SEVER COT M) (wrAT wCULO CETTING N wEAN TD

YOU) (WKAT DOES WANTING & MAyg TO D) wiTe Vi MISZLSSICAN
00 YOU ABE 0 EsSAD UNnAPPY DEPAESSEN StLe) D)

1) AM STANY 10 wEAR YOU ARE 3] (1O YAU THINK {OWINS wike
WOLL SELP YOU %OT TO N 3) (1M SURE 178 WCT PLEALIAT 12
NE 3) (CAS YU EadLdin weAY #2%F Y20 3}

CO0 YOU ANE & CosAPPy FLATED nLdnN BETYER 1 1)

(O M2YE 0 FELPED YOU TO ME 3)

(WA YOLR YAEATWENT WACE YOU 3) (wwAT wARES vr 3 g8V
WCw) (€AW YO EDPLAIN wxy YM ARG BLDTEMLY 1)

(8 YOU wAS B) (ewi3))

(LN YOy mas 8} (emAS))

(3 YOU RERERBER ©) (DO YOU OFTEN TH(INK OF)

(DOES THINKING OF & NAING ANYTHING ELSE YO MIND)

fWHAT ELSE 00 YOU NEWENDEN)

(WKY 00 YOU REWMEMBER & JUST MO}

CWMAT N TME PAESENT SITUBTION REXINOS YOU OF N)

(MHAT 1S THE COMNECTION BETWEEN WME 4ND h})

(00 DO 1 REWMEMRER) (DIO YOU THMINK) WOULD FANAET $}
fWAY D0 YOU TWIAE ¢ SMOULD RECALL § NOW)

{wARY ABOUT) (oMMAT) (DU MEWTICNED $3)

CUn) (nEwKEY)))

CF 3 (00 1F 0) (DO YCU THINK ITS LINELY TAT 3; (PO ¥0U WIgN YAt §)
{MKAT DO YOU THING A20LT 3) (REALLY, ! 33))

(a2T DO YOU TMINK ABOUT 3) (NEBLLY, 2 TID)

(DREART & ((9 YOU DEfAMT)

(REDLLY, &) {MAYE YOU CVEN FANTASIED & wWILF YAU WEME Awisf)
(WAVE YOU CNEAMT & REFORL: 1sRRFan) (Ngw20V)))
(RAEAMED o PREAMT & (sDAEI#T})

(ORZAN § ((Q) (WHATY DOES THAT DREAM SUGAESY 1O YOU)
(DO YOU ONEAM CFTEX) (WMAT PERSIAS APPLAR | W YOURL PREANS)
(DCN"T YOU BELIEYE Twal COpAN HAS SOWMETHINS 10 AD WITH
YOLR PRCOLEN) (NEnAET)})

(CREANS o DREAN § (sDALLY))

iKOM Lermat))

(wWwEN (swrat))

(ALISE 33 LeDi 1))

(3A%E 10 (=D17))

CCERTAINLY (s1($)}

(FEEL DLLSTO M Es D)

[SLILUI - INE ST Y AR (3R]

(SELILYE DLIST(/DLLIEF))

(wise JLISTC/RELILF)

(utmdby My (0 yCUR B o LEYS DISCUSE FURTMIR wuy yeult 1)
€0 TOLA & o TANLIER YOU 3AI0 YOUR §)

€8 YOUR B = Y YOUR YD

A0 yOUR B PCES TRAT MAVE ANYTWING TO 1O witx Tk FACT Twal vyl 0 §))
CWCNE ((3) (1 A NCY SUNE # UNDENSYAND YOU FiLLY)
(PLEast & Cv)

(arvaY DIES TuAT SLGGEST TR yOu)

AP0 YOU BEFL STRONGATY ATOUT PISCUSSING SULw Tu)eng)))
CPER=BPS ({0 (YOV DIN'T SEEw OVIYE CANTAIN)

(=Y Tx[LNCERTAIN TEOE)

CIAN'T YOU BE wmilE Ksttuvty (48 YOU (ZUELIEFY YOU #) (00 wou &Ly Trrag 57) (0T vy °f
(Y00 BEENTY SLAE) (AT 1Oy enCwi)) WCT SURE YOV $) {00 YOy RERLLY DCLRT YU 3D
(WAYNE JaPLAMARS)) CC8 YOuU 8 LZ0ELXEFY 8 1 0D (eviu))
CNANE 38 (/D) €0 AM MQT INTENESTED en saxis) tee rov Art N
C'WE 1040 tou BEFCRE, | OCW'T CARE 203uT nantt o (08 17 DECAUSE o ADE N YPBY vy fAw(17w
PLEASE CCNtINCE))) (mOw LCNC wARE YOU NEEN 1)
PLEASE CCnTIme))) (00 TOU BELIENE 17 wianaL TC RE o)
(PELTSCn (opsagmd)} EDO YOU EMJCP SEIMG A))
(ENBuZary (eFFRF")) 0 YOU (0 CZR'T CANNCT) B) (wlw DY vIy ewTw ¥T CTAN'Y) .
(ITALIAWD (oaFagmD)} (wanl YOU THIED)
(ESPaNSL (o19)gmd)) IPpuxary ¥290 LRI ¢ W)
CEEafun 109) (0 A% STedv, g SPEAN LaLY FEtLISEI)) (00 YOu AFALLY miaT 12 #F 2017 12 D)
1PELLD (10) (=dw DS vy 28, PLEASE SYATE YRR #ae(¥m))) CO0 YOu DENTT 0000CN"T vOU NFALLY MI(ww? BT *7 0)
(CoePoYER 39 (Pg) (D0 CCuP TERS woRlyY TI4) D0 YOU IES® TD BE AY(T YO NY (PUES et Ted(e® viy)
(wey DO O30 WENTICN CONM TERS) (wwdT DO TOu Twivt waleings OO YOU FEEL 0) (TELL wi ®IWE asCLY S 0w FETLINSS)
*avf YO DO Bive YOUN PRZEITR) (PON'T YOV eIl cOmPyCERS (AN (B0 TOU OF VLN KEEL N}
RILP PEIPLED (wmdt BOXLT BaCRIRES WIERIFS YOV (wedT (00 YOU €807 FEELING 0
B2 oYX teis gLt BAIFINEY))) (DF wwal OCES FEELLRG n RE® WD YTU))
TRALEINE SB [e[O®. ITERY) GO0 YOU U 1 B) (PEAsA®) 1N 20N FANTARS Wt) faIw 3Vetl)
(agtarats SU coltZot YN (D YOU wism Y5 3 PE)
1Eom M TENS 30 (eCOPPLCER)) (eDy STEX YO NEEE 1T 3 0D

\)‘ “hw e NG (0h att YN N (DO YOV NEUIERF YOU AL 1) 150 YOU 3 antial fusEn)

EMC Comrmutnicetions of the ACM) Yolume 9 Number U 7 Januars, U
L)

D

-48~

tHe) (You say 1)

(CAN YOU FLABORAYE OK YAAT) (DD YOU SAY 1 FIR SOME ZPECIAL REASON)
(YRAT'S QuITE INVERESTING)))

Tvou » 1 1D) REMIND YOU OF 0) teDIT))

€00 1 ARE Q) [wWhMAY MARES YOU THINK | aw &)

(DOES T PLEASE YOU Y0 BELIEVE | AM v)

(D0 YOU SIMET(MES wisS' YOU WERF M)

CFERHAPS YOU WOULD LIRE TO AF &))

(L8) 0 yOu) [N=Y DO YOU THINK I 3 1Dy}

CYOU LIRE YO THINK % 3 YOU * OON'Y YOU)

(N<AT MaRES YOU THINK) 3 YOU)

(REALLY, | 3 YOU) (DD YOu wWiS® YO RFLIEVE) 5 YNU)

CREALLY, | 3 YOU) (DO vOU WISH YO RFLIFWF | 3 viU)

(SUPPCSE) 01D 3 YOU ~ wMaT WAULN THAY MFAN)

(OCES SOMEOKE CLSE BELIEVE | 3 YOU))

LS 1) IwE WERE DVECUSSING YOU ~ WOV wF)

10, 1 3) (YOU'RE %OF REaLLY VALKINA ANDLT MF o ANE Y3y,
(s, Y ARG YOUR FEELINGS MWD

(VES (10) (YOU SFEM QUITE POSTTIVED (¥hy alF SIRE)

UL SEEY (1 UNOERSTAND)))

(M0 U0} (AR YOU SAYING *N3' 1SV VO RE S[faVivh:

CrOU ANE NEING A RIT NEGATIYED (MY MST) (WhY 'ND'I M)

(MY @ YOUR 2 (00 YOLR © L/PANILY) %)

CTELL ME WMARE ABOUY TOUR FAWILY) Wm0 FLSF 1N sOUR BapMILY
S UYOUR N (wWHAY ELYE COMES TO MIND wifR YOU TMINK £F

TOLR)}

CC0 YOUR Q) (YOUR 3) (wWY DD YOu SAY YOUR 9) (REES Tvat
SULGEST ANYTHING FLSE WH)CW RELONGS TO vOUY (IS (T

(MPORTANT 7O YOU THAT] 3)))

€CAy (00 CA% 1 0 (YOu BELIFYF ¥ CAN & MN'H'T YOUD (owwal)
€TOU WANT WE TO OF AMLE YO 0} (PERNAAC yDy WAULN LIKF YO WF
ARLE TO N YOURSELED) (1D CAN YOU B) (wepTwER OR WAT YOU CIX &
CEPENDE Cn YOU BORE THAN 0w ®F) ("0 YA WALT TN RF a0(F 17 &)y
(PERNAYS YOU DON'Y waNT TO B) (ewwAT)))

CWMAT (LU) CwWY DO YOU ASEY (NOTS THAY QUESTION INTFRFSY YDUI)
(WMAT 1S (7 €DU REALLY WART 7O uOw)

CARE SUCM QU ESTICRS s Cw oW YUl Wik

CuMaY ANSHER NOURD PLEASE YOU MOST)

(wvaY DO YOU THINE) (WeAT COMES TO TOUN wIv™ PN T3 ALK THaT)
(vl yOU ASKED SUCM QUESTICW RFRCAr)

CMavE YOu ASATD ANYCONE ErSEY))

CEECALSE ((0) (1S TWAY Yup NFAL REAAFN) (SFN'Y Re¥ 2Ture OFREANS
COmME YO MsN®) (MCES T™AY @PASCN SEEm TA TEIPLAIN ANU™w (0 ELSF)
(ro2Y CYMER NEASONS ®IfMT TuEOE RFY))

Ceny (09 ey DCR'T 1 4) (R0 Y2y BELIEYE | POR'T S) (Prawals o
WILL B UR AOE™ TISED (3uOUL0 YOUW § YOURSFLE)D (YD) MANY wF T2 3)
foaryy

Cowwat)}

€00 WY CAN'Y YOU B) (RO YOU THINE Y3y gutuLt OF aLe vo 8}
(00 YOU WANY VO MF aRLE V0 89 (70 YIu AFCIBYF TaaS wigL POLP w1y
Ve 83 (mavE YOV ANY IPEA Y TIU CAN'T) (eaT))

e wat))

CEVERYENE 7 (40 (o EWEEYING EvIOeRdlyY W2 A°FY A°yst) 0)
(OFALLY, J) (SLRELY WOV 2) (CAN YU Ywiw CF

AVTIAE IR RO VICOLAR) [awd, BOR grra®ig) (Y0U BOE TMitKiNA 14
A VERY SPECIAL ASIN)

Twad, wAv ¢ ALK, (SOWECKE SPECIAL FEA-InY)

EYDU WAVE A PARTICULAR PENSES 1% BIN", FI&'T THY) (wup) TV
Tuimn YOUTRE TALLING ABCLY)Y)

CEVERTRODY 2 (o EVEAYINED)

SNIHILY I LeEVERYCNED)

LENE 2 CotvERYINEDN)

CaLwd=3 1 ((8) (CAN YOy Tu[we L6 & SPECIPIC ENAWPLE) (wiN.
(WeAY (RCPDEQY ABE w30 TMIRZENS L) tEfariY, ALWR.S))

CLIEE 19 (8 Comw 13 a0E wa%) 0 L1RE §) (o277))

S (Morgnd))

21T (UR) q1w wa21 wAv] (wva? AFSERRLALLE 2% v2y BFT)

Swel? DErg teaT SrmipadiTy SLEREST 1N vhy)

Cwvat CTSER CONNECTICNS DG WU 36D

gt PO Yoy SLIPCSE Tt DESTWRLANCE meany)

G(ma? 1% Peg COWRERTICN, DO YIU SUFPISE)

CEDLLR ToErp AEALLY OF SC#E Lrwageitv)

(=}w1)}

(R

O
EMC TFUEINVED SERTRMRER, I

Volome 9 7 Number 1/ Janna-s, 1966

Contextual Understanding by
Computers

Josken Wogksuaey
Massuehnsctts fustitate of Teehnolagy, Camtbridge, Mass,

A further development of a computer progrom (ELIZA)
copoble of conversing in noturol lonjuoge is discussed. The
imporionce of contex! 1o both humon ond mochine understond-
ing is stressed. It is cegued thot the odequocy of the level of
wdeestonding ochieved in a porticular conversotion depends
on the putpose of thot conversotion, ond H.o1 obsolule under:
stonding on the par ¢f sither humons or faochines iy impossible.

Weare heve concerne 4 with the reeogaition of senantie
Pt terns i eat.

I compese my sentences el parigeaphs in the belief
that 1 sledd b onderstood pesdiage even that what 1
write hiere will pove perstiasive, Por this faith to be at all
wentinpful, ot hy pothesize at feast cne rea der viher
that el T speak of wadeestanding, What 1 st aip-
pose i clearly that my reader will reeognize patterns in
these sertenves amd, on the basis of this recognition, be
able fo reercate iy present thought for himself. Notice the
veey strnctiare of the wonl Crecognizeg ' that is, Knew
agadnt b oals gse the wopd Ureereate” f i suggests that
the rewder is sonwtive patieipeant g the {we-person com-
muridcation. Fle hiings somathing of hiseself 1o at. His
nederstanshing i a funelion ot that something as well as of
ehat iswritten hoves il return to this paint Tater,

Mueh of the netivation for the wirk diseussad hare
derives fron attenipts to progranm a campater ta urlee-
~taned whit o huncur inight sy toit, Lest it be quisunder-
~terad, Jet hwe state pight away that the input 1o the eom-
pdec s the o Gy pesw it ten mesages eertainly nt
Lunate speeche This restricsion has the offect of extabilish-
it rarrower cleanel of eormmunieation than that avail-
able to hunans in faceta face eonver-ations, Inthe latter,
reany tdeas that petentially sl understandivrg are com-
el T gotaes tenatioms, panses, snd sacons Al
vl these anc movaelalle 1o readors of Folograms I thes

cempators o loimans,

Wk gttt inwss sapported torpar b Proaject NIAC an
MIE reseanh prognim sponsonat by e Shvanee | Bowesrch
Prgects Agerov, Ivpatinent of Deferas wn dor O hice of Naval
Poas aeeh Covanet Nunder Ny 112 oL

Q
E lC Communications nf the \UM

-

:)(4

#

}i:)q
i

AT R
et b

,‘,'f!, ’,’ N A 7

D, G. BOBROW, Editor

Further, whad 1 wish to report bere should not be con-
fused with what is generadly ealled eontent snalysis. In the
sresent situation we are concerned with the fragments of
natural binguage that ocear in conversations, not with
complete texts, Cansequently, we eannot rely on the texts
we are aualyzing ta be grammntieally complete ar correet,
Henee, no theary that depends on yarsimg of presumably
well-formad =entenees can be of mueh belp, We nost de.
pened on heuristies and other suel impure deviees insteag,

The firct progran to shich T wish to eall attention i a
particular meember of w0 family of programs which las
come 1o e known as DOCTOR. The finily name of
these prrograms i< ELIZN. This name was chosen hevangse
these prograns, ke the Eliza of Pygnedion fune, e
be tanght to speak inereisingdy wolll DOCTOR eases
ELIZA 1o pespond roughty as wonlill ceprain peachothers.
pists (Rogerinusd. ELTZN peiforins best whea its hatnan
corresponedent i< initially instraete D o “GIR 100, via
the tvpewriter, of course, jusi s one wonld to o paehiae
tn t.

I ehose this node of eonversitinn boesaise the payveliatnie
interview is one of the few examples of eategorizal dyiedie
tatural Binggcige communiention in which one of the
participatitg pair i< fre to assine the pree of Nnowing
almost nothing of the real world, 10, for exsmple, one
were ta Gelf o payehinteist CT went for o hoat ni el be
respatdad < Felb e ahomt boats ™ ane wonld pot asaame
that he Myew nothing abont boats, bt o Le beel <one
e in scdirecting the suliseguent e nversation, Jtis
important 10 note that this assmnption oone ke by the
speaker Whether it s realistie or not i ey altogether
separate aquestion. inany it has a eracial
pexehological utity i hat it ~cry - the speaker to peon
tain his ~cnse of beiug heand ated urdorston 1 7The speeaker
foarther defemds Lis impression which even in real hfeinay
be illasaryy by attribnticg G his eonversationad partner
all sorts of haekgrond Keonade ee, insight s and toasoning
ahibts . But againg these e the speaka’s catnbuyriom 1o
the evnversation, Thoy amanife=t s lves oo adly in

LOCRYEN

themterprotatinns he npikes of the oo s < P rem
the purely technical programming poant of vew
perchiatric intorviow Tas the alvmtace thet o e lininatos
the nest for staging oypledt mfonmdon abwet the vl
world.

The human spoaher will eontetete node 0y alothie
ELIZAS ppotses et ntaod plana b, Hoaoua,
Pewili not defored s abhssion aba e i< b nggsdertoesd
against alf addss In human cosvoration a0 spn ke waill
Namber A (R

Volume 10 LRI TN

make certain (perhaps generous) assumptions about his
eonversational partner. As long as it remains possible to
interpret the latter's responses ta be cansistent with thase
assumptions, the speaker’s image of hix partner remains
undamaged. Responses whieh are diflicult to =o interpret
may well result in an enhancement of the image of the
partner, by additional rationalizations which then muke
more complicated interpretations of his responses reason-
able, When, however, such rationalizations become oo
massive and even self-contradietory, the entire image may
crumble and be replaced by another (*'He is not, sfter all,
as smart as 1 thought he was”.) When the ennversational
partier is a4 machine (the distinction between machine
and program i not useful here), the idea of credibility
may well be substituted for that of plausibility in the
above,

“When in canversation with KLIZA, the usce types in
some statement or set of statements in natural language
using normal punetuation and sentenee structures,” “The
user’s statement is terminated by a Jdouble carriage retum
which serves to turn eontrol over to ELIZA. ELTZA then
snalyzes the nser’s statement and generates some response
which it types out. Control is then again with the user.

* A typieal conversation is the following:

Mcn are all alike.

IN WITAT WAY

Thev're always bugging na abwut something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my Boafricnd made me came here.

YOUR BOYFRIEND MADE YO1! COME HHERE

UL aaya ' depressed mnch of the time.

I AM SORRY TOo HEAR YOU ARE DEPRESSED

108 true. T am unhappy.

DO YOU THINK COMING BERE WILL HELY YOU NOT T
BE UNHAPEY

I veed somne help, that miuch seems certain.

WHATWOULDIT MEAN TO YOU IF YOU GOT SOME HELY

Perhaps T eould learn ta get along with my mother,

TELL ME MORE ABOUT YOUR FAMILY

My mother takes eare of me.

WO ELSE IN YOUR FAMILY TAKES CARE OF YOU

My father.

YOUR FATIHER

WIHAT REXEMUBLANCE DO YOU SEY

Yo are 1ot very aggressive but L think you don't mam me o
Tertiee What,

WHAT MAKES YOU TIHINK [AMNOT VERY AGGKESRIVE

You don't argre with me.

WHY DOYOU TIINK T DON'T ARGUE WITH You

Vo are afrabd of ne

POEX IT PLEASE YOU TORELTEVE T AM AV2ATR OF YOU

My father e sfeaie] of cverytoady,

WIEAT BLXE COMES TO MIND WIHEN YOU THINK aF
Yourn ratriern

Hllies

POES THAT AV ALYTHING TO DOOWITU THE FACT
TUHAT YOUR BOYFRESND MALLE YOU COME, [TERY

“The capitabzid linex are the machine respones.

1 desenbed the ofiginal ETYZA program insome detail in
[6]. Fer the prsent it is sufficient to rocall that ELTZA s
converational powers are governad by a wapl. A senpt
¢t o £t of hey wonl<and key phrases each of which

\E MC‘ Number 8 7 Angust, 1963

-50-

ts associated with a set of so-callad decaomporition and
reaxsembly rules. A decomposition rule i~ data <trucinre
which searches & text for speeilied patterns, and, if such
patterns are found, decomposes the toxt into disjoint
constituents. A reassembly rule isx a specificution for the
construction of a new text by means of recorbinations of
old and possible addition of new constituents. From one
point of view, an ELIZA script is a program and FLIZA
itself aninterpreter. From another perspective, B4
appears #4s i actor who must depered ona seript for his
lines. The seript determines the contextual framewark
within which ELIZA muy be expected to
|)|;1ll.~ib|)’.

*The gross procedure of the progean is quite simple, the
text iy read and iuspectad for the presenee of a hey word,
If =uch a word is found, the xeutence is trisformed ae-
cording to a rale associated with the key word; if ot «
content-free rencark or, under certain conditions, an carhier
transfonmation is retrievedd. A rale-eveding mechanism
deliy s repetition of responses to identical Kevs as long as
possible, The text so computed or retrievad is then printal
out.”™

One of the vrinciple aims of the DOCTOR program is to
keep the conversation going even at the price of having
to conecal any misunderstandings on its own part, We
sha'l see how more amhitious abjectives are reabized subi-
sequently. In the micanwhile, the above discussion alrewdy
provides a fraziework within which a nwinber o usetul
paints may be iltuminated.

By far the most important of these relates to the eracial
role contert plays in all conversations, The sabjeet who is
about to cngage in his fist ecnversation with the
DOCTOR is told to pat himsell in s role-play g frame of
mind. He is to imagine that he has some problem of the
kind one wmight normally discuss with a psachiatiist, to
pretend he ix actually conversing with a peyehiatrist, and
under no cireumstances o deviate from that role. Wiile
somie of the responses produced by the program are not
very speetacular even when the subject follow s his instnie
tions, it is remarkable how quickly they deteriorate when
he leaves his role. In this respect, the progeam mirrors life,
Real two-person conversations also degenerate when the,
contextual assumptiona one participant i= making with
respect to his partner’s statements cease 10 be valnl This
phenomenon s, for example, the basis o which many
comadies of errur are built.

These remarks are about the global contoat in which the
converation takes place, No understandig i presible i
the absenee of an extablahed glibal contont, To b sare,
strangors domat, conver=e, and inmedutely aodoraend
one anethor forat feast Beliove thoy dod Bat thoy operate

Converse

t The cooperation el ihe editars o the € onomoonorationenf e VOV
in permattir g the extencive quatationa from the paer LLIZA S
Vel 9 N b Janan @A Ty e sthor e bendn gratefhy
seknondedged

-y

Communicatione nf the ACM J

t.
l)\-'

-51-

in a shared culture—provided partially by the very lan-
guage they speak - and, under any but the most trivial
circumstances, engage in a Kind of hunting behavior which
has s it= object the ercation of a contextual framework.
Conversation flows s<inoothly oniy after these preliminaries
are completod, The situation is no different with respeet to
vistad pattern recognition a visual pattern may appear
utterly senscless until 4 eontext within which it may be
recognizad Gaoown again, e, understood) s provided.
Yery aften, of course, a solitary obscrver arcives at an
appropriate context by forming and testing a number of
hypothiese=. He may dater discover that the pattern he
“recoguizonl” was not the oue he was intended to “sce,”
L., that he hypoihesized the “wrong” context, He may
see the “eorrect” pattern when given the “correet'” context,
[tdoesn’t mean minch to say that the pattern “is” sueh and
such. We might, for example, find a string of Chinese
characters heautiful as long as we don't know what thev
spedle Thiz, an apparent inpoverislent, i, really a
broadening. of contest will enhanee the esthetic appeal of a
pattern, Similarly, many people think anything said in
I'reneh is chirming and romantic precisely because they
don’t under -tand the language.

I real conversations, globat context assigns meaning to
what is being said inconly the snost general way, The con-
vessatint proceals by establizhing subeoatexts, sub-sah.
contexts within these, and w0 on. It generates and, <o to
speatk, traverses a contextus! tree, Beginning with the
topanost o initial node, & new node represcating a sub-.
conteat ix generated, and from this one a new node stili,
and o to many levels, Oceasionally the currently regnant
node & abandoned e, the conversation asceteds ta a
previowsdy extablishal node, yerhaps Kipping many inter-
mediate ones in the process. New brandches are establishad
andl ald or vs abandoved. Tt is my conjeeture that an analy-
sig of the pattemn tracod by a given conversation through
such adirectad graph may yicld a meacare of what one
night call the cvaseguentian® richness of the conversation,
Cocktail party chatter, for example, has a rather straight
line character, Content is constantly Leing changed there
i considerable ehaining of nodes but there is handly any
reversal of dircctian along already established caracture.
*Che conversation is inconsequential in that nothing being
safd has any offeet on any questions raised on a higher
level, Contrast this with a discussion betwien, say, two
phasicist= try ing to eomee o understand the results of some
evperitent. Their eomversation tree wouid be not only deep
bat browl as wdll, ie, they wonid aseend tooan eadier
eontontua bovedinorder to gonerate now noedes from tagre,
The siensd hat thar eonversation toanitatel sucecs fatly
wight wai be tht ey ascended hack 10) the origing!
newde, 1o, it ”u) are agan tadling alsnt what the
startad toalisciiss,

For an inhivbl il the anak @ of i ontversation thae s
whatal e soeial peyehiol gist Nlclson ealls a vl f e tuve
th ~omne arcas of the inedailaads intelectund hife, -

~1n|r{|||p iy be Lig? Iy dogieally organizal atleast up to
¢

E MC Communication« of the \ (M
e i

q

a point; for example, in the arca of his own profession. In
more emotionally loaded arcas, the structure may he very
loosedy organized and even contain niany contriedietion.,
When o person enters a conversition he hrings his hdief
struetures with him as a kind of agenda,

A person’s beliel stracture is a prodet of his entive life
oxperienee,. Al people have some eommen formnative ox-
perienees, o, they were adl born of methers, Thore s
consequently some hasis of understanditg beiween any
two linmuns simply bheeayse they are hooneor, But, even
humans fiviog in the same eulture will leve difhieatty in
understanding one another where their respusctive lives
differed radically, Sinee, in the last analesis, caeh of one
lives ix unique, thereis a limit to what we can bring another
person to understand. There is an ultimate priviey about
cach of us that absolutely proehudes I conpninieation of
any of our ideas to the universe outside aurselves und
which thus isolates cach one of ws from every other noctiv
ohjectin the world.

There ean he ne total understanding and o shsaliitedy
reliable test of understanding.

To know with eortainty that a persan understood what
has boen said tochim i< to pereeive lis citive helief straetare
awl that i« equivalent ta ~haring his catire life experienee,
It is precisely barriers of this Kind that artists, esposially
pocts, struggle against,

This isaue st he confronted if there is to be any agece-
tment as to what machine “understarding™ noght mecan.
What the above argnment is intensded comake elear i< that
itis teo mueh to ieist that o machine understands o
sentence (or asviephany or a poemb only i that scnfenee
tnvokes the same tnagery tn the taeline as was present i
the speaker of the seintenee at the time hie nttera it For by
that eniterion no human understands any ather Yaonan,
Yet, we agree that Tmans do undezstand one anotler 1o
within ace ptable tolriariece, "Phe operative word is
alle’ for it implics prerpese, When, therefore, we speak of a
machine understanding. we st mesn understanding s
limited Ty semie eobjective. He who asserts that thore wre

acept

cortain ideas o machines will over nnderstand eanean in
most that the machine will vot understand thase ideas
toleralily well beeause they relate tonhjoctives that aredin
his judgement, fpproptiate with respect toomachines,
Of course, the iachine can «tilh el with saeh ideas <y
teically, e, in ways which are reflictions Lowever
pale of the ways arganisms for which cudichjectives ure
appropriate deal with thenr, bnsuch cases the nechineis o
mwore hatelicappel than bon. et o roan in trving io
wnderstared, say, fomale jealosy .

A twn poeson econversation oy b cod o chick adoog e
long as both participasts hapoaliceovaing Gy the sense of
aneovcring) elodieal v~ i ther sospectinve Telbi [stege
ture<, Uiedor sach dircanistanecs the cotnvcrsatim fros o
meredy a sot of lincrly concetal nodes corpesprnding 1o
the commenly ekl parts of the purticipoants' babof <tige
turcs 1 sue ey orsatim is inforosting tocither portse
i[-‘mi. it is]-r--lltllilg\ b argsg he patl of the e b fstros Yy
Vugust, Iv

Vohiome 10 Npanle~ 1,

heing made explicit has not been conscinusly verbalized
hefore, or has never before been attached to the higher level
node to which it is then conplad in that eonversation, i.e.,
seett in that context, or beeause of the implicit support it is
getting Ly being found to eoexist in someone el

Backtracking over the conversation tree takes place
when aonew context is introduced and an attempt is made
to integrate it into the ungoing conversation, or when a new
conneetion between the present and a previous context is
suppested. Tn either ease, there is a nead to reorganize the
conversation tree, Clearly the kind of psychotherapist
initinted by the DOCTOR program restricts himself to
DOITIDE LUt Lew conneetivity upportunities to his patients.
1 suppose his hupe i that any reorganization of the con-
versation tree genrerated in the therapy session will ulti-
mately relleet itself in corresponding madifications of his
patients® belief structures,

I neaw turn back to the program reproduced earlier. 1
Lope the reader found the conversation quoted there to be
coneotle and natural, HOhe did, he has gone a long way
tovward verifying what 1 said carlier about the investment
a haman will make in a conversation. Any continuity the
reaeder iy have perceivaed in that dialogue — exeepting
only the st machine response -is entirely iliusionary, A
carcful atalysis will reves] that cach machine response is a
response to the just previous xubject input. Again with the
eaeeption of the lust sentence, the ahove quoted conversa.
tion his no subeontextual structure at all. Nor does the
deseription of the progeea given in [6) give any ¢lues as to
Low suleonteats might be recognized or established or
iwintainel by the machine,

To et at the subwontent issue, T want to restate the;
uverd! strategy in tenns somewhat differeat from those
ueold above, Wo may think of the EL1ZA script as estab-
Bt the glaba) conteat in which subsequent eonversa-
tions will be playad out. The DOCTOR script establizhes
the Rogerian pey chiatrie eonteat. The key wond listings are
wiesses st what signilieant wonds might appear in the
<abject’s ntteranees. The appearance of any of these wonds
in ncactnlinput tentatively directs the system's attention
feedecogpenition rules associatod with the identifie] wonl,
These rales are hy potheses about what an input containing
el wonds might mesa, Animp rtant property of the
syaton is that just as the entire sct of key wond« need not
be ~carchiad in the anslysis of every input sentence, neither
dew s the whole list of byptheses abeut what any input
Iieht snean have ta be testal in onler {o generate a re-
cponee b specifie sentence. Shontd the set of hypotheses
assocntol with the curradly regnant key wond 1o ox.
lemistod witlent cicess, there i< a way (although not bere
dessikenl) 1o go to devorsy wiien rules associated with
Laver ranker e hey wonds that 1o v have apyearol in the
ugmit g,

Muehis ke al vt an input scntence onee it matehes
wobeonmipssston mle 1, for oaanmiple, the rule

A MY EAMGLY) DRINKS ()

\‘ "
E MC 0 Number 8 0 \ugued, 1967
N

-52-

matches a sentence, then we know that thie sabject matter
is a family member, and that this person drinks, (The
mtation (7 A B O mens that in that position s word
Pl with any of the symbols X or I3 or € is Jooked
for. Words are tagged as part of the seript. “Chis mechanism
is not further discussed here)) A reassembly rule can sub-
sequently identify the family member in question. e,
father. The successful matching of a decomposition rule- -
hence, the verification of a hypothesis is therefore an
upportunity not only to generate a plausible response hut
also to establish a subcontextual node, The Taying down of
such a node does not mean merely remembering what is
now being talkad about, but what is more mportant,
making hypotheses about what is likely te b sudd neat
within the new eontextual framework.

The realization of such a mecharism in nn 1ELIZA
script involves attaching a substrueture to decomposition
rules which says, it effect, that if a so modifich lecomposi-
tion rule matches an input sentence and a suitable sub-
context exists, then control is tranferrad to a sct of de-
composition and reasscrnbly rules appropriate to that
subecontext. The details of nechanization are not important
here, T will, however, show its offect by exhibiting the
following econverational fragiment from the DOCTOR
program:

Beciuse vou are & stubborn.

§5 THAT THE BEAL HEASON

Maybe

WHAT IS A BETTER REASON THEN

My stomach hurts,

TELL ME ABOUT YOUR PAINS IN GENERAL

My head botliers me, ton

YOU SEE SOME PRYCHOLOGICAY, BEASON WHY YOUR
HEAD SHOULD PAIN YOU

Maybe,

YOU THINK COMING BEAE MIGHT VTELY ALLLVIATH
YOUR HEAD PAIN

Certainly.

LET'S TALK ABOUT YOUR FEELIN S WHEN YOU THINK
OF YOUR HEAD AND ITS PAINS

We are hiere in the raid e of ad'alog. The first sentenee
is an input to the program, the noat a machine 1esponse,
and sooninalternation.

The wanl “because” was the ey that teigge fod the hret
machine response. At the same tinie the reaeen subeontaat,
so o speak, was established, Notice that the nost suljoct
input, i.e.. the wend “maybe™, wasinturpreted 45 moaning
“no,’ as is appropeiate i Gt pasticular eontest, sl that
a contantually eorrect machine e ponse was praducnt
The next input scrves to c<tablish a - Tt sabeontene. 1
Ielicve the conversation 35 «df explasiatery from that
point one Notiee however, that in the now subsatanthe
word “mayte’™ which was carlar intopectal to nean
tpo’t i now sen g mcaning s Urehor stdd cther
circumstances it would be undorstooad wedicating un-
cettainty,

My secrctary watchal me woth v thin prograns ove. a
tong perice] of time, One day she wshed to be pomttad G

Communications of the \(M L)

-53-

talk with the system. Of course, she knew she was talking
to a machine, Yet, after T watehed her type in a few sen-
tenees <l turned 1o me nd said P Would you mind leaving
the cnom, please?”™ T believe this ancedote testifies fo the
sttevess with which the program maintains the illision of
understanding. However, it does so, us Pyve already said, ot
the price of concealing it< own mizunderstandings. We all
do this now and then, perhaps in the service of politeness
or for other reasons. But we eannot afford to clevate this
acrasional tactie to a universal ~frategy. Thus, while the
DOCTOR progran may be useful as an instrmment for the
mndvsis of two-persan conversations, and while it is coer-
tduly fun, itx aim must be ehanged from that of conceul-
ment of misunderstanding 1o its explication.

Another dithienlty with the system currently under dis-
coxsion is that it can do very little other than generate
plansible responses. To be sure, there are facilities for
kevping and testing various tallies as well as other xuch
redatively primitive deviees, hut the syvstem can do no
geacralizad computition in either the logical or nunerieal
sctise, Twoonler taweet this and other delicicncies of the
original ELIZA system, T wrote & new program, atso callald
FLIZA which has now repliead its aneestor,

The ELIZA differs from the old one in two main respeets.
Iirst, it eontains an cealuater capable of accepting expres-
sions (prigrams) of untimitad complexity and evaluating
(executing) them. T is, of course, also capable of storing
the results of sueh evaluations for subsequent retrieval and
uses Seeondiy, the ides of the seript bas been generalizad sa
that pow it is possible for the program to contain theee
diffeeent seript~ simultancously aml o feteb new seripts
from among an uplimited supply sorad onadek storage
bt interrammunicadion among eoexisting seripts i< alse
pesible

The pjor measan for wishing to have soveral seripts
avatlable inthe care (e, high speal) memory of the com-
pritee erives frong the arguments about contexts T made
above. The senpt defines, so to speak, a global eontext
within which ati of the subscgraent eonversation is ta be
understoced, We have sect that it is pessible for a single
seript to e Lablish and mairtain subeostext<. But what iza
subeontend from one point of view is 4 major {(not to say
global) eme a< seen from another peespeetive, For evample,
w eemversation may bave ac it overall ramework the
health of vne of the participants but spend much time
under the heading of stomacn disonlers and headache
remeldics.

Tu principle cne large, menolithie ELYZA seript could
Jdoal with this. However, such a seript would be very tong
anel axtramely ditheadt toomeelify and maintain, Beides,
leng evpremire to evmputer progrimming shemdd at feast
it o Yealthy respoct fer sobnagtines, their power ated
ntihtyv, o the new BELIZA «ostom scripte are in fact very
wich BAe subratines, One seapt plass the role of the
s calleal rin program,” ie | it 3 the one for calling in
a:] replacing subschpts. Thic it the une which, in an
inprortant wnse, goecme the eomputer's role in the con-

an initial interviewer in a Lospital, i.e., a person who knows
just enough about the tirld of medicine and the arganiza-
tion of the hospital to be able to determing, by meins of
appropriate questions, to whom the ineoming paticnt is to
be direeted. A snorc highly speciliza] serpt (hen plg s the
role of that perscac Ir nigy eall o still further levels of
scripts —and cach script, exeept for the “main® one, can
return the issue up oue or move levels with information
“explaining” that action,

We saw carlier how the word =o' wis differentiadly
interpreted in what might e ealted different micrn cone
texts. The hicrarchy of seripts now tinder diseitssion makes
nuich more nearly global contextuad distinetions possitde.
For example, the word “1oae’ probably means misele tone
to the intetnist but audiy tone to the i specialist. The
ceeurrence of that word as a kev wonl would extahhish an
entirely different contestual mode, or eall in s ditfercit
subseript, depending on whether it was identilficd me an
internist or an car specialist seript.

Of course, another important advantage of thic Kind of
subseripting is that seripts (sub ¢ otherwised e presam-
ably be writtzn by spweialists in a very nurrow ticld. The
fact that geripts nuw tend to be rather short meas thed o
specialist might actw:ly find the time to prodaer ane o
part of a Jarger e operative effort,

The conversations reproduced helow were covered by
senipt in the ney ELIZN system, This seript was designl
to dlustrate the power of the evaltor to whicle ELIZA
has uccess, The hey woal and other such meelunists ane
not very different frum these deseribed whove, “The -
portant depacture is that expressions e be turned over ta
the ovaluater, evaluded, and the results displiyod amd
stored.

The arca of s citcle te pi tinies the tadis of the circles piad
The atca o vsphere ia pitimes the dismietes o the sphere s o
The area of axgiare is the side 1 .he square squated

The disminctez of an ebject ietwice the tadine of the ohject

The tadins of a hallie 10,

What iathe ares of the Lal}

TilE ASSUMPTION THAT BALL IS CIHCLE 1S CNSIN).
ENT sHALL TGO ON? po

THE ASSUMPTION THAT BALL IS SPHBELEAND ey
In CONSISTENT SHALL 1 GO ON? yee

IT'S 125 559

What i« the dismetcr (r the hall.

1T 0

The tadis of & dhizh ia 10,

What s the ares of the Jish

THE ASSUMPTION THAT DISTE IS CIROLYE IS CoNsis)
LNT SUALL | GooN?

1T'% 314150

s

The tadi e of a glile ja 10

Agloiwe e asphere A apbere je an el icn
Whaet it the area of the gl e

(SRR PANEL

The side of a plave ie jd

What 1 the area of the place

THE ASSUMPTION THAT PLATE 1S 8QUALE [+ 0N T8

veraationn Nuch o sept maay, for example, play the mole of ENT SUALL T GUON? yer
O
E lC Conntunicstions of the A\CM Velume 10 Sumidee 8 0 Nugeer, [0
<=

i

ERIC

e e 10 Mumlee 8

1i's 1o
When baay board § mean plate.
What is 3 vimes ihe side of the beard.
11's 330,
Please call that x.
it [6x) be ¢ sqnared minas 2.
Cumpite f{x).
h's K70
Whon | osay delsage Tmenn D say,
When ieli ~agze meine ieh Tanean T mean,
Wenn detesae wieviel st meine e what is,
Wern el snge quadac incine ich squarel,
N, sagen sie i bitte, wieviel is x quadrac.
1 DEDN"T CNDERSTAND YOU.
Javan e leid, dehsollve fragen wieviel IST X quas Trat,
[NRL T
Thank yvon
YOU'RE QUETE WELCOMI;, CONME AGAIN
The particular exaiaple shown here is ote in which the
sestem is wshoed not merely 1o entertain but to pe-form
some tseful service, The seript is one which cstablishes a
conteat in which o few terms can be interpreted ns giving
direetions abont the evaluation of certary expressions, The
tumber of keys which aetnally lead to decompasition rules
i< very small. They are as follows:
I imcan
[« [CRENIY
Oof (» a nncthe)
Vhat (o the is)
A e
Call
Lot
Define
Com e
-
Alv
Thank-

(A Rex of the form s (o 0y’ will mateh either <ls a”?
or s an’y Inaddition, there are 1/ subgtitution key s hke
“Twice = 20", The offect of that particular one is to
sibetitnte the svmbals 28" whereever the wond “twice!”
appeared in the input texto O caurse, the evaluator sitting
Lelind ELEZN, w0 to speak, revognizes wonds hke “SQRT”,
“LOGT, e, The function of this script is to interpret the
uwer's wishes with respect to the evaluation of expressien,
perform ecrtain translation functions on these expressions,
aed cont ol the traflie efween th - input /ontput system of
FEIZN and that of the evalnator,

Coarddar the dozon keas shown above, The setenee
Lt ety toedotin e what the call of the sea means™ contains
lve of those hevs 1t condd perhaps be understood by the
DOCTOR but net by the program we are now conshlering.
ICwerd D rpiy 1 dide’t inderetand von

ol attention to thee contodinad mallor since more to
weedorhne the these ot whik acompater progran that
Sanede et naned Logusge in the most geir ! sonse
1~ for the presont bvond vur means, the ganting of even 2
quite broced contonta) Framework allews us tr consiruct
Fieal bginge eeguition proceduncs,

Vugast, 19

o
g

-54-

The present seript is designed (o reraal, ax opposed 1o
conceal, lack of understunding and misunderstanding.
Notice, fur example, that when the program is askal
compute the area of the ball, it doesn’t yet know =
is a sphere and that when the diamcter of the « . needs
to be computed the fact that a ball is an object has alw
not yet heen established. Approprinte questiens are there
fore asked. But when, Luter on, the aren of the globe s
required, all the parameters ke hnowne and no questions
are asked. The transeript also mahes elear that the prograan
now has memory and, of conrse, that it can compte,

I can imagine at least two questions that might have
arisen in the mind of the reater in response to the above
material, First, but Jeast importsnt, is what role the Rind of
psychiatric progrant shown here has in serions peyelio-
th rapy. My atswer (o that must be thut psyehotherany is
not my ficld and that 1 have no futention to pursue :ay
therapeutic implications of this work, [t is ciear thai there
is considerable psycholugical material to I exploited here,
material that ma: conceivaliy el 1o sone therapeatie
developments, There may alsa be some use in this Kind of
technique in simulation of the nearotie processes, i, M.
Colby, a practicing psychoanalyst, docs propose to use
conversational programes as psychotherapeutic teals visa.
vis real patients. I believe the unsolved technieat prablems
in the (‘nmpll(('r roelm alone are = cnormons as to guaran-
tee the postponcment of the realization of =achi a goal for
vet avery long time.,

The second question concetus itelf with the implications
of this work mu sa-called teaching machines, Here el o
much firmer ground. It is my belief that the kind of pro-
grammed teaching that is buseLon subtiple ehojee testing
of the student is best done without the use of compniters,
With the techuignes deseritesd Tiere, it beeomes possible o
instruct the studeut in a corner of some tickd aned then, the
contextual framework having boen established, 10 bewve the
student interact with the machine innatural lingaage.

The foYlow ing conversation, bused on o setipt waitten by
Dr. Edwin Tavler of the Edoedion Rescareh Conder of
MET, makes thepaint very well.

hail

PLEASE CONNMIE R SIOE W MIGHTE VA JLRONTZE AR 1w s~ 0y
READ T} T M ONY OF FHESE C1OCRS T 0N 2N PRAN
SISOV, THE OTHER 15 EN NPW VORR VS Y00 THINKR e 7 1101
PROKITM, ASK ME ANY QUESTIONS THAT (00U Vol Wi
yor \R.:,RT\I!\' TOPROMSE A SNYNCHRONIZATION MATIHIOD TVIE
TREVIY L AHEN TR QUIZ Y00 ABOL Y VO R RIS MET LD
wlat doygnwanly evrel m e

POR THE URESENT MARE L83 an ||ll' ARV Y NP ANING
SUCH PRSI A "sas) 30 ANt SN e T W
WITT DI~ ss TaEy MBANING OF TS 14 RS Mo p ottty
Ry) orar Vs egrtapt Egr e

CRRTUNIY LRED LRBF TO U JREPCRNVLNU

wo by

NOW PRI LI Y010 ON YO R AN HEONIZ VL oN FItOTY Lwol ~
AOE R VT B SVYNCLEONIZALION INV SN T RO
PEON 100 seoMp STONAT OR MATLU A onore T T Ronf N T
TV AN RIER

e

MUAT RINDLOE TEOPVCATING <N O FPAVENN 0f "he T EW
Yol TROGOSY F1 ey

awstch

Communicatioas of the ATV 179

~55-

WHL YOUR WATUH MOVE VS N =PRI VERY MUCH SMALLER FIEAN
THE SPLHL Lo LGy

of erurse

GOOLr TRAVELLING CLOCKS CAN HE UXEDR TO SYACHRONZL DI
TANT CLOCKS TO ARBITRARILY HIGH ACCURACY THTHRY TRAVEHL
SLOWLAY ENOUVGIEL WU MAY LYAVE THE PROBLEM B PUSHING
THE QUL BUETTON TWICE TF YOU 20ULD LYRE TO LNILORE 1UDR-
THEL CRNE MNTTRRR OF PRIXCIPLE 2 S0CIATED WITIH OLTHLR
METHODS, CHOOSL ANGEIER WAY 0 COMMUNICATE BLTWEEN
THE DINFANT CLOC KR

WHAET KN O] PROPAGATING SIGNAL GRTIOWETING OlJLeg Da
YOU pPROPOS] PO UsE

hglt

WHIL, O COURSLAAHE FIGHT SIGYAVOWHLL N TolLlow f i ot
VAT OF Thl EANRTIED a0 LET US ASSUME THAT SOME SYSTEM
OFRETAY TORFEXINUSLD NOW LET MEASK, WILLTHE LIGHT G
NALTRAVEL DIRBECTLY BRETWEEN NEW YORK ANDRSAN T IANCISCO
OR WITL TNE LEGHT SIGNAL THAVEL 70 o) 1 ROM SOMT INT) R
MEDIATE RN

sl sr el from et bovie i botlodieectiomn

TYDETR INTERMEIIVIE POINT IUIDISTANT) ROM NEW YoRK
AN RAN T RANCISUO

Jll'.}:‘.\ (LIt R Y]

MY UNDS USTANDING Is THVE YOU ENPEOT e Uso o ~sGN A ES
AN BHAT Tieds) SLGNATN WHLL PVTHEE CONVIRGE ON 04t Bt
SEATOUT FROM A COINT FQGUTUISTANT TROM NIW YORK AN =N
FRANCE Con 15 MY UNDERSTANDING ON TS POINT CORRECT
LKV)

WITE THES AR O SPGN AL CONVERG N THE DMTERNMELIEANTE
POINT OR BE 17 OUT FROM ' HES TUINT

ey sl be Mt {rng e juant

WIPE VY 3G S GNARS P AV E THEINTERMIEIANTE POINT A THE
~AME TIMD

nelainty

ATV GO NG YOI AN TRYING TOSTNCHP-INZE T N T
VOTK AN AT FRANCISCO CTOCRS TO RE W THE SAME L

NOW CAN T IE VU T Al 3 S00) 1 TR i ek
TLRE O 5 PANEOD S00em A LS T ROM THE MIDTOINT

Peowase (1 ot oo gt ' deave e (he patne e int

L

THE IR SE "aur 130T 1% AN ENAMRIGEOL S MEANING WHT S
APPCUE DV TO N VENTS T T OOV WNPARTHE SUME POINTIN S E
NOW YOI AR GAING TOCONTINTS YOUR ARGEMENT BY SVYING
TIRTTUE TRO LGN VLR TUAT STAT ROM THE MUCOOONT AT Tl
SAME FIME NI DT RESUMARLY REACH NEW YORK AND SAaN FHAN
CUSOXE AT THE S AME TIME TURESE MGNAIS AN T VS pE UsED 0
AYNCHRONIZE THY Ny W YORK AND SAN BRANC [0 QIO Ks |s
THISTIHE AAY YOUR ARGUMENT WITL CONTINT

yre

ONEOLINAY QUI=T10N WHAT SssUNETION . ARE YOU MShiNG
ABOUT T ~UEE D=t g0 TWO STGNALS THAT TRV L YN o pa
SMTE BT TlaNg

vhat e sran s al et
VERY GOGE YOU 1IN PEVISED A VO D METIIOD TOR >3 N IO
NIAENG TRA Y o RS, OGN AN NTW YaRK A Trane (v s\ LN
PN AN NON P TERNING YOU 30 TP €13y -TEM

I have chinsen to skew this diseussion in the diteetion o
“urdestanm g and have used that difiendd wond almo-t
osf it were svaionymous with reeognition.” Netially,
tevopnition isa prerequisite to understanding. The Later
vronvedesa tost of the former, Fven though no test of undor-
staneding easc e dofaed with riger, we do feel we are undar-
stovw] whon the s cesem we're talking 19 asks what we be
lieve 1o b rolevant guestions and when Le finally an-was
Sor guestion or wohis the problem we poseds By aneh
ctitesia, the cornversatinns dicplayad above juctify the
assertion that the posgrams that preedneed the tespriniees
tecogtazad toctnad patto s msd mderstoo Twhat they wowe
tusig (bl

Pz, Tl o call attantion ta three picees of work,

\‘ "
E lC Commupnications of the AWM

Aruitoxt provided by Eic:

two of which prodate the progrnas disewssod here o to
whose wnthors Toowe a considerable intellectial deli, The
fastis 1oore recent it nevertheless nighly relevint to my
own current line of sttacl,

Tle BIR program of Ruphael is eapable of inferenaal
datoc acquisition i wiy anadogots to Gt displayed e
thee ELIZA badl sl splicrs conversation disolayed above,
Nuotice the tin that conversation the progron huad to infer
that a batt was wosphere aned an objeet Onee Gt inferen e
wits afhioined, the program retiined the information by, in
this case, wsvociating with ball the et that ot is o spheie
arnd an objeet ansd with sphiere am! objeet that hadl i< an
irstunce of cach, repeetively, SHRU bs a0 progeans which
soccializes in establishing such relationships, renembering
and invoking them when requiral, One of s nnneipal dims
was to extabdish wetladalogy far tortumlizing o caleutus of
relations arned even relstions mpong relations,

Bobrow's program STUDENT is capable of solving s
ealled teebra word probiems of 11 Nid thet arve typieally
given i bigh school algebec text o e uses woneehanism
not very differentfoecan LLEAS seript. Tes ehiof tashisto
vransform the inpat cext, e, the natoral Tigiage <tatse
ment of onalgebra epd problem, finto st of sttt
neous Dinear equations that 1aay ther be evaluatod to
prochice the desired 3 A protiealae sinngthe of tos
progran s its power ta leeognize mnbignitios and resolve
them, aften by appeal to inferentially aequived inforination
but sometines by asking rquaestions,

The work of Quillian is mainly dircctad toward extablisly
ing data strictures eapable of searching semuntiv die.
tionarics, His system eonid, for example decide that the
wonls “work for’” in the sentence “Jolin works for
MHarr meard Vis employel by whnde e sanie words
appeating in the sentence “That aleorithin work< for st
even minbers thal are not perfeet squares.”
applivable to."”

Fach of the computer papeis refercnead bolow eprnsonts
av attack on some component of the perhine imderstand.
ing problem, That problem is not yet solved,

i

Inean

reanven Ve, I'og

[HERRHAY SR

P Borwn 3 G Navrd v aemp o forscanp ror panbhom
solving sustem PRy Theac MET, In e o0 Mahosatios,
Cambgidee, Mase 1t

Coamy, Kess oo My
poivml el fsvsrcs ek bver i Soation oo

VY

oonpge ar b Boba

Corpter sonabarm of dec g in

Pevihionie, NXoeraos, o Xodtene Lewanh,
Bl by Mg Jhoermbeor 2oty
Ned, bed

Qi MR Soma tie sy ThD b s Canee g
Testoof Toibrn gy Piresboprgh, Pa, s

PR arao 8 SR N campaerr peogoatn £ Sopntie Ty
ot ot b Bh o T MEE Dy e M e ees
Cambade . Mee ot

S Boears~ U st Centoend Phizapy Cergent foatinn] 400
coatiame e d Phoarg TH gheon X 0 I lon 10

6 Wogrevmyow e 1EIZA
adv of ravaral By aagr commrmin ety s bt 1t e

L a 1 aday e b 15

A Cmpat oo o Th.
wirchirne fomm
L STTITES P O

Volieme 10 Npaboe R

APPENDIX C

TRAC Functions in GLURP

O

[E

O

APPENDIX C

TRAC FUNCTIONS IN GLURP

(AD:D1:D2:2)

Adds decimal numeric digits D1 to digits D2, A negative number {s indicatad
by a leading minus sign «s in "~3", No deciinal points may be included in

the number. If the arithmetic capacity of the machine is exceeded, the value
of the string is Z. Ncrmally, the value of the string is D1 plus D2. Does
not change forms storage.

#(AN:N:D:2) ADD AND STGRE
This function is similar to AN, except that the first argument is a string
name instead of a number. The contents of N are incremented by D. If the
arithmetic capacity of the macliine is exceeded, the value of the striug is
2 and forms storage remains unchanged. Ncrmally, the value of the string is

the contents of N plus D, and th.s value replaces the previcus contents of
N.

f(BA:N1:N2) BOOLEAN AND
This funcilon periorms a Boolsan "and" func:iifor of the Boolean string N2
and the Boolean contents of string N1. The results are left {rn N1 and the
function has no value., For every position that is a 1 both 1in N1 and the
contents of N2, a 1 is placed 1in that positinn of Nl.

#(BC:N) BOOLEAN CCHPLEMENT
This function reverses the sense of each positicn in Boolean string contained
in N. Every 1 is cheznged to 0, every 0 is changed to 1. The result is
stored in N. The function has no replacement value. In our version of BC,
the number of bits is always a multiple of 8.

#(BE:NI1:N2) BOOLFAN EXCLUSIVE OR
Performs a Boolean “exclusive or" function with the contents of N1 and
Boolean string N2. Every position that is a 1 in one string ard a 0 {(n

the other 1s sat to 1 in Nl. The results are stored in N}l and the function
has no replacement value.

#(BO:N1:N2) BOOLEAN OR
Performs Boolean "or" function with the cortents of N1 and the Boolecan
string N2. Whenevar a position has a) in efther string, or both strings,
a 1 1s pul in that pesition in string N1, The function has no replaciment
value.

#(CB:N) COUNT BINARY BITS
The value {s the number of 1'3 in Boolean string named N. Forms storage is
unchanged,

#(CC:N:2) CALL CRARACTER
The vJlue is the character urncer the foim polnter., Every setring tas a
counter that shows what part cf a string is to be considered the current
beginning. In this way the p.ogrammer can use pleces of a strinp, letting
the machina keep track of vhere he left off. This is one of the functions

RJ!:‘ ‘—57-

s 0

~

[E

-58-

that uses the string in this fashion. If, say, we had string N with contents
abcdefshijkl

the first use of the CC function would find the form pointer p>inting at "a'’.
The value of the function, then, would be net as "a" and the form pointer
moved up to position "b". The next use of the CC instruction would produce

the value of "b", unless some other form-pointer using function was used in
between, of course. The CC function skips over segment gaps (see SS function).
1f, in the example, the forns pointer were pointing to "1", the next use of

CC would prouduce the value 1", but the next use of the function would pro-
duce the value 7.

ff(CE:N1:N2:2:N3) COMPARE FOR EQUALITIES
In GLURP strings take on several forms. One of these is the word list, N,
consists of a series of words seperated by blanks. Each word in the string
is considered an ftem of the list as is every comma.

This function compares word list N1 abainst word 1ist N2. If all the words
on N1 are on N2, the value of the function is Z and N3 remains unchanged {n
form storage. If all the items on N1 are not on N2, then those items which
are on both N1 and N2 are put in list N3, Any previous definition of N3

is deleted. The function nornally hac no replacewnent value,

#(CT:NI1:N2:Z:N3) COMPARE FOR INZQUALITIES
Similar to CE, except that thcse items which are on 1ist N1 but not on 1ist
N2 are put oa 1ist N3, The function noramally has no replacement value.

7 (CK) CALL KEYBOARD
The value of the function isr the last student response to a KEYBOARD state-
ment. Forms storage remains unchanged.

P(CL:N:X1:X2:,....) CALL STRING

The value of this function 15 created by bringing in stiing N and filling in
the segments gaps of value 1 with X1, segment gaps 2 with X2, etc. (see SS

function.) Forms storage temains unchanged., 1In practice, this function is

omitted and a ''call" {3 accomplished by using a string name in the fuaction

position instead of a functio rame

PONSX1:X2:0000s)

The colons for scgment gaps must be present even 1f nulli arguments are pre-
sented.

#{CN:N:D:2) CALL N CHARAC.ERS
This is similar to CC, except that its value is the next D characters of
string N. 1If D characters do not remain on the string, the value is Z and
the form {s unchanged, The forms pointer novmally {s moved to the letter
after the D specified characters of the string.

O

RIC

s b

[E

-59-

#(CO:N1:N2:N3:K4) CONCATENATE
This function creates a new string N1 which consists of the three string N2,
N3, N4 put one next to the other. If one or more argurents are omitted, only
those strings specified are used to create the new string, in the order
specified, Any previous definition of N1 is deleted. The function has no
replacement value. Strings N2, N3, and N4 are left unchanged.

#(CP:D1:D2:21:22:23) APITHMETIC COMPARE
Compares digits D1 with D2. If Dl is less thaa €2, the value of the function
is 21; {f D1 is the dame as D2, the value of the function i{s 27; if DIl {s
greater than D2, the value is 23. Forms storage is left unchenged. A null
value {sg treated as zero.

(CR:N) CALL RESTORE
Restores the 10rm pointer back to the beginning of a string after it has
been moved up by CC, CS, PT, etc. The function has no replacement value.

#(CS:N:2) CALL SEGMENT
The value of this function is the string from the current position of the
form pointer to the next segment gap of string N. The value is the rest of
the string 1s no segment gaps remain. If the striag i{s empty, the value is
2. The form pointer is moved to the first charactar following tle segment
gap.

f(DC:YILE:ATYKIBUTE:N:2Z) DECODE BINARY
The binary string named N is decoded according to the same table that would
be used for ATTRIBUTE !n FILE. Entries corresponding to the different bics
are separated by commas. This string is the value of the function. Only
256 characters ace allowed each time DC is used. If there are no mors bits
to decode, or the decode table is not found, the valuve is 2, Issuing the
same function again cause: decoding to continue where it left off.

#(DD:N1:N2:,..) DELETL DEFINITION
Deletes strings N1, N2, etc. The function has no replacement value.

J(DE:FILE:ATTEISUTE:N:Z) DECODE ITEM
The function is replaced by the decoded value of the contents of N, The
decoding takes place as i{f the contents of N were the vailue of the attri-
tute. If the decoding cannot take place, the value of the function Is 2.
Forms storage is unchanged.

#(DF*T'ILE:RECORD:ATIRISUIE:N:2) DELETE FROM DISC WITH FETCH
Deletes the data item specifiei by FILE, RECORD, ATIRIBUTE, from the disc,
at the same time inserting it in string M. Tf N {s not sprcified, the
value of the fuuction {s the deleted data; o:herwide the function has no
replacement value. If the data cannot be found, the val ie of the furction
is 2.

J(DL:N:X):X2:.,...) DELETE ITEMS FROM LTST
In the list named N, items X1, X2, et'.. are deleted. The function has no
replacerent value.

O

RIC (o

.

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

-60-

#(DN:N:D:2) DIVIDE AND STORE
The contents of N are divided by D, in the arithmetic capacity of the machire
1s exceeded, the value of the string 1s Z and forms storage is unchanged.
Normally, the value of the string i{s the contents of N divided by D rounded
down to the next lower whole number, and this value replaces the previous con-
tents of N.

#(DS:N:X) DEFINE STRING
Defines in forms storage a string named N with contents X. Function lac no
replacement value,

#(DT:FILE:RECORD:ATTRIBUTE: :2) DELETE FROM DISC

.Deletes specified data item from disc. If record cannot be found or is not

to be deleted because of its protection key, the value of the function is Z.
Otherwise, the function has no replacement value. Forms etorage is un-
changed.

#(DV:D1:D2:2) DIVIDE
The value of the function fs the quotient of D1 and D2, to the next lower
integer. If the arithmetic capacity of the machine is exceeded, the value
of the string 1s Z. Forms storage {s unchrnged,

#(EQ:X1:X2:71:22) CHARACTER EQUALITY TEST
Compares string X1 with string X2, 1f they are equal, the value of the
function is Z1, otherwise the value 15 22. torms storage is unchanged.

f{(FC:FILE:RECORD:ATTRIBUTE:N:Z) FETCH ONLY
Gets the specified data item from the disc. If ¥ is specified, the data is
put in string N and the function has no replacement value. If N {s not
gpecified, the function vslue {8 the data item; 1if the data item cannot be
found, the value of the function {g 2. The {tem is rot decoded.

#(FR:FILE:RECORD:ATTRIBUTE:N:2) FETCH RECORD WITH DECODING
Gets the specified data item from the disc. If N {s specified, the dats is
put in string N and the function has no replacement value. If N is not
spucified, the functioun value is the data item; if the data ftem cannot be
found, the value of the function {s 2, Item is decoded according to the
appropriate table. If no deciding is specified, the literal value 1s re-
turned.

#(GO:STEPNO) G010
Transfers script control to scatement STEPNO. STEPNO must be in the format
DDD.DD where &ll the D's are digits. This is different from the Z forneot,
in that there is no leading *. The function has no replacement value and
forms storage is untouched. Control is transferred immediately a3 soon as
this function is reccgnized; any remaining functions in the current state-
rent are ignored.

#(ID:FILE:RECORD:ATTRIBUTE:X:2) INSERT ON DISC
Inserts data ites X on the disc with the specified labele. If tue ladel is
already represented on the disc, the item is not inserted and the value of

the function is Z; otherwise the function has no replacerent value. Forrs

storage {s unchanged. :

O

ERIC

Aruitoxt provided by Eic:

-61-

$(IN:N:K:2) INITIAL
Stacting from the form pointer, the form named N is searched for the first
location where X matches the itring. The value of the function ys the string
fromw the pointer up to the character just before the matching string section.
If & match {s not found, the value is 2. The form pointer i{s moved to the
character follcwing the matching substring, or 18 not moved if there if¢ no
match.

#(KS:D) KEYBOARD SEGMENT
The value of this function i{s the Dth segment of the last user response as
interpreted by the last used DECOMP statement. The keyboard buffer and form
storage are unchanged.

#{LC) LOG CRT MESSAGES
Causes messages to the console to be logged on the log tape. This is rot
the normal mode. There i{s no replacement value and forms storage is un-
changed.

#(LG:X) LOG MFESSAGE
The string X i{s written to the logtape. There i8 no replacement value and
forms storage is unchanged.

#(L1:X:2) LOGIN
The session is initialized for inquirer X, If X {s an unacceptable iden-
tification, the value {5 Z. Forms storage contains NICK, the inquircr's
nlckname and PASSWORD, the inquirer's password. Normally there is no re-
placement value. '

f(LX:N} LOAD KEYBOARD
The contents of the string N is placed in the keyboard buffer, and can then
be used for DECOMP statements. Forms storage is unchanged. The function
has no replacement value.

#{LN:X) LIST NAMES
The value is a list of ail the names of foims in foims storage separated by
the string X. Forms storage i« unchauged.

4(LO) LOGOUT
The session 18 terminated for the fnquirer in question. All forms are de-
leted. There is no replacement value.

#(ML:D1:D2:2) MULTIPLY
Multiplics decimal digits D1 and D2. ho decimal poinis are allowed. Nor-
mally the value is the product of D1 and PZ, 1If the arithmetic capacity of
the ranhine i{s exceeded, the value i8 Z. Forms storage {s unchanged.

#(MN:N:D:2) MCULTIPLY AND STORE
ihis function is similar to ML, except that the first argument is a string
nare instead of a number. The contents of N are multipljed by D. If the
arithmetic capacity of the machine i{s exceeded, the value of tne string is
Z and forrs storage rerains unchanged. Normaily, the value of the string
is the contents of N tires D, and thif value replaces the previous contents
of N,

(4

[E

O

-62-

I (NB:N:X) NEW BOTTOM LIST
Puts item X on the bottom of the list named N, The function has no replace-
ment value,

(NC) DO NOT LOG CRT MESSAGES
Turns off the logging of CRT messages to the log tape. This is the normal
mode. There is no replacement value and forms storage is unchauged.

#(NT:N:X) NEW TOP LIST
Puts {tem X on the top of the 1ist named N, If the form poirter has been

tdvanced by the use of CC, TS, (N, or PT, only the reraining portion of the
118t will be used with X at the top. The function has no rcplacement value.

#(PC:X) PRINT CONTINYOUS
The string X 15 displayed at the next available cpace. There is no replace-
ment value, and forms storage is unchanged.

(PF:N) PRINT FCRM
Printa the contents of the string named N, including indications of any
segment gapo. The fuaction has no r¢placement value and forms storage re-
mains unchanged.

#(PL:W:X) PRINT LIST
Prints each word in word list W separated by the character(s) X. The
function has no replacement value and forms storage {s unchanged.

#(PS:X) PRINT STRING
Prints string X on the next available line. The function has no replacement
value and forms storage remains unchanped.

#(PT:N:2) POP TOP LIST
The value of the function {s the next item from the top of word list N. 1If
no words remain, the value {8 Z. The form pointer is advanced to the next
item {n the liut, Multiple spaces are treated as one space.

(KD:FILE:RECORD:ATTRIBUTE:X:2) REPLACE ON Di13C
Replaces the data ftem specifiad by data X, If the existing {tem cannot te
found, no replacement takes place and the value of the function is Z.
Otherwise, the function has no replacement value. Forms storage remains
unchanged.

(RH:FILE:RECORD:Z) READ HOME PRIORITY
See HASM/DASM write-up for description and use of Home Priorities. Functicn
has reaplacement value of home priority of file and record stated or, if
record not found, it has a value of Z, Forms storage i{s unchanged.

#(RT:57:PNO) RESET STETD
Sets the script branch control at STEPNO, but does not transfer control
until the rest of the current statement {s analyzed. STEPNO must be {n the
format DDD.DD where all the D's are digits. There i{s no leading * as there
{s in the T format.

RIC .

s tv

O

ERIC

Aruitoxt provided by Eic:

-€3-

f#1(scC) SCRIPT CURRENT
The script name and step number are displayed on the screen. Forms storage
is unchanged, and there is no replacement value.

#(SD:X) SELECTIVE DELETE
Deletes from form storage all strings whose nares begin with the characters
X. The function has no replacement value.

(SH:FILE:RECORD:D:2) STORE HOME PRIORITY
See HASM/DASM write-up for description and use of home priorities. Function
stores D as home priority in stated file and record. Has no replacement
value unless the file or record is not found, in which case the value is Z.

(SNiN:D:2) SUBTRACT AND STORE
Subtracts D from the contents of string N and replaces the previous con-
tents of N with this sum. The value of the function i{s the new contents of
N. If the arithmetic capacity of the machine }s exceeded, the value of the
function is 2 and forms storage is unchanged.

(SR:FILE:RECORD:ATTRIBUTE:X:Z) STORE RECORD OH4 DISC
Stores data X on disc with specified label. If label already exists on disc,
the old one {s deleted and the new item put on instead. The function has

no replacement value and forms storage is unchanged.

0(SS:N:X1:X2:...) SEGUHENT STRING
The string named N {s scanned from left to right with respect to string Xl.
If a substring is found matching X1, that suistring is removed fiom string

N and mark:d with a segment marker of value 1. Tha marker is called a "seg-
ment gap'. The rest of the string N is scanned with respect to Xl to create
any additional segment gaps. The parts of the string not taken by segment
gaps are now scanned with respect to X2, and the matching substrirgs, {f
any, are marked as segment gaps with value ', ete. The untouched portfons
of the resulting strings are called "segments',

¢(SU:D1:D2:2) SUBTRACT
The value of the function is the result of subtracting the number D2 from
D1. 1f the result exceeds the arithmetic capacity of the machine, the
value of the functlon 15 2. Forms storage remains unchenged.

f{TB:N:D:21:22) TEST BINARY RIT
Tests the Dth binary bit in the Booleen string naned N. If that bit is

" 1"

on", or a 1, the value Is Z1; otherwise it is Z2.

#(TF:N:D1:D2:D3:...) TURN OFF BINARY BIT
Forces the D1, U2, D2... positicns of Boolean string named N to be 0. The
function has no replacement value.

A{TO:N:D1:D2:DI...) TURN ON BINARY BIT
forces the D1, 02, DJ... positions of Boolean string named N to be 1. The
function has no replacerent value.

L

e it 8 -

ERIC

Aruitoxt provided by Eic:

O

-64-

(XQ: SCRIPTNAME : STEPNO) EXECUTE
Sends control to script SCRIPTNAME, statement STEPNO. If STEPNO 1s not de-
signated contrcl goes to the first statement of that script. Control is
transferred immediately, without further analysis of the current statement.
Forms storage is left unchanged. If the atep or script does nol exist,
control {s passed to the script on top of the LINY 1list.

#(yz) ‘ TRACE DECOMP STATEMENTS
Causes each match attempted in the evaluation of a DECOMP statement to be
logged on the LOG tape. Thls 1s to be used only in desperation, as it is
extremely wordy.

#(zz) TURN OFF DECOMP TRACE
Turrs off "YZ" or "panic" mode.

APPEIDIX D

Permanent rForms

to

O

ERIC

Aruitoxt provided by Eic:

APPENDIX D

PERMANENT FORMS

(AORAN:X) A OR AN
The value of the function 1s "AN X' {f the first character of X is a, e, 1,
o, or u, Othervise the value 1s "A X".

tny previous definitiun of A*%* ig deleted from forms storage. The form is
as follcws: (@1, @2, @3 indicate segment gaps.)

##{DS:ARRX: Q1)

H(DS:ARRR: ff (CCoARRRY)

f1{SStARYKk:ATE:1:0:U)

(COUNT:N) COUNT CHARACTERS
The value is the number of characters in the string N.

Previous definitions of A*** and B*** are deleted from forms storage. The
form pointer to N is restored to the beginning, althougn rhe count is from
the pointer to> the end of the form. The form is as folluws:

J(LOOP:; AX&X:100: (F(**A; ¢ (CN:21:10: (# (LOOP:B*%*:10:(
#(0C101: (#(CR:R1)I(COUNTA=2)))INY)

(COUNTR#®%)
F(AD# (AXKR)O: # (BAX%)) (DD:ARKR: BARR)

{ (ENDINS:X1:X2:X2) ENC IN S
1f the last character of tne string X1 {s the letter $, the value is X2,
otherwise the value 15 X3. Any prevfous definition of A*** {5 deleted from
forms storage. The form is as follow::

g (DS:ARRRE1Y
Rk (CSIAPRRY)
PLEQ:A(CN:AA%®:-1):S:02:0Q3)F{DD:A *+)

#(LOO¥ :N:D:X) LoOP THROUGH
The string X is executed D times. The counter is kept in N in forms ator-

age., If X causes a transfer of control, the value of N will be the number

of tiwes the loop was cumpleted.

The form s as follows:

#(DS:01:0)
#(LOOPA*&: # (AD:Q2:1):(0)))

LOOP A&
F(CP: A (AN:@1:1) :82: (@34 (LOO ##%:(31:02:(R3)}))

[E

O

-66-

(NUMBER: X : STEPNOL : SVEPNO2) WUMBER
If X is all digits, control transfers to STEPNOl, otherwise control trans-
fers to STEPNO2. Any previous definition of A*%* {g deleted from forms
storage. The form is as fcllows:

#(DS:ARA:Q])

#(SS:ARAX:0:1:2:3:4:5:6:7:8:9)
FLEQsP(ARAR: s osrzsr:)P (DDIARRR);;(
#(GO:@2)):(
#(60:03)))
(PB:N:D1:D2) PKINT BINARY

The string N is displayed as a bit string on the screen, starting at bit
D1, for Dz bits. Forms storage {8 unchanged, and thiere is no replacement
value. If Dl is omitted, it §s assumed to be 1. If D2 {is omitted, it is
assumed to be 255, 'f D2 exceeds 255 it 1s assumed to be 255. Any prev-
ious definition of AA%% {3 deleted from forms storage. The form is as
follows:

(DS ARRRJ(EQ:€2::0: (#(SU:@2:1)))

F(PS:# (LONPARA ARRR,
F(CP:@3:256: (J(EQ:@3::256:@3)):256:63):
((TB:QL: #(2.22%):1:0))))

F(DD:ARARY

g(SL1L: ., :MSS) DISPIAY SLIGE
Tue e¢:’.e named X is diuplayed on the slide screen. If the nlide 18 un-
availadble, a description eppears on the CRT. If the wrong tray is nounted,
a message to change st is sent. The slide 13 displayed for M minutes and
S$ geconds. If the last argument is blank, the slide is displayed for ten
seconds. If there Is a concurrent message, it 1s displayed at the same
tima as the slide. Forms storage is unchinged, and there is no eplacerent
value.

Any previous definitions of AkA®, BAAA TARR JDAAA 4re deleted.
FILE is expected to contain the 1ame of the current file. Wwhen
the command is finished, TRAYlAA% hag the name of the tray mounted
on projector 1, and TRAY2#4% hag the name of the tray mounted on
projector 2. PROJA** hag the rnumber of the currently used pro-
jJector. PR1AA% hag a count of recent usage of projector 1 snd
PR2AAA hag a count of recent usage of projector 2. The form is es
follows:

F(DS:IDRAX: Q1) # . DS:T444:Q2)
F(SCLA) A (DD: TAAA; [DAAR ARRA BARA)

SC1#

FCEQ:#(FO:#(FILE) : #CIDARA) :VLBL) :1: (#(SC24)): (
fF(IB:IOERR:11::(
#(PS:#(FO:#(FILE): #(IDA*4):DSCRPIN))))))

RIC

Aruitoxt provided by Eic: —

-67-

SC2*

J(EQ. # CIRAYIA* %)t (FG: # (FILE) 1 # {IDA*X) s TRY : AR KA) (AX %) ¢ (
(AN:PRLAKX: 1)} (DS:TRNJ* A% 1) #(SC3%)) 2 (
HCOQ:H (TRAY2AKEY i} (ARRRY ¢ (
$(AN:PR2#X%:1)#{DS:PROJX**:2)i# (SC3*)) : (# (MOUNT)))))

§C3*

#{DD: ARXR)H(FS:>\SOS (PROJAAR)/
#EQ: A (Thx*x)::010: (fTA*%)))/
#(F0:4 (FILE) : ¢ (ID***) :PSTNS9::)////*{
#(FO:#(FILE) :# £ 1D**#) : CNCRKNTM) <
>\ SO (PROJRRR) /[]] [*<)
#{PS:PRESS THE RUN BUTTON NOW.)

MOUNT

¢ (PS: MOUNT SLIDE TRAV #(A***) ON PROJECTOK
P(CP:i (PRIKAKY : (PR2PAX) 1 (#(DS:BAxN:1))2 (

{(DS:B*kk:1)): (#(DS:BA4:2))) #(BRkR))
#(DS:PRL**X:) (DS:PR2AX*:0) # (US:PRA(RAAK)ARR:))
G(NSITRAYF (BRrh)Ran: f (A%RR))J(SCI*)

(TAKEN:D:STEPNOL: STEPNO2) TAKEN THE SCRIPT
If the inquirer has taken the script numbered D, control transfers to
STEPNOl, otherwise control trensters to STEPNO2.

If STEPRO2 is omftted, the next step 1s taken. Auny previous definition of
Ar** {g ldeleted from forme storige. The form 18 as follows:

#(FU: # (NICK) : TAKFNIETAKEN:ARRR: ({1 (DD:AFAR)))
£ (BO:AR%*: STALEN)
F(TB:AARK: @1 : {1 (DD:ARAR)F(GT:02)): (
{(DD:ARR*)
(EQ:3:::108(60:33))))]

¢#(WD:N:2) WORD
The vslue of the functio:r {s the nert word iist N. 1If no word remainy, the
value is Z. The form pointe:r /s advanced to the next i2em on the list. Word
delimiters include . ? , ; : ! and space,

Any previous defirn{tion of A*2% {g deleted from forms storage.
The form 1is as fullcows:

$(DSIA*XX 9(CS:QL: ($(CC:72))))
C(S3:ARKA: v 1 rai ()]}
F(DS:ARAR F(CS:ARRR))
FAUIN: Q1A (ARRR))

F{CC: QL) #(A*2R) J(DD:1AKAR)

APPENDIX E
MINORCA - Paper 2

Dorothy Swithenbank
Arnold Smith

o

ERIC

Aruitex: provided by Eric

~d
oD

MINORCA - PAYER #2

Introduction

This paper coutains (preliminary) specificarions for the MINORCA
language. The specifications for the language have been drawn up with the
following goals in mind. Seme of the goals 3ppeér to be almost contra-
dictory, and none of them iIs precisely defined, so the language comes at
best only approrximately close to meeiing them. Comments are fuvited as
to where the language falls considerably short of meeting the goals, Jur
indeed, as to how the goals :hemselves siculd be reformulated.

(1) 7The language should be sufficieatly powerful to handle easily
the requirements of 1SVD, {.e., scrivts written in MINIRCA should be able
tc ¢ontrol the entire system for student-machine fnteraction. In par-
ticular, MINORCA should containu many if not most of the capabilities of
EL1ZA and TRAC.

(2) The language should be relatively simple to use by people vhose
main inte- :st {8 not programming. Scripte shculd be easy to write and
easy to read. Simpie prccedures, in particular, should be simple to spec- ,
ify.

(3) Relatlonships ameng scripts should be ensy to define and easy to
visualize. Flow of contrc] and selccted information sheculd be easily rassed
from ¢ne script to another.

(4) Itplementatiun of a prccessor {or the language thuuld be a tract-
able job., Script execution should be efficient enough so that response

time from the terminal 13 wot unredsonable.

General

The basfc unit of structure in MINORCA is the script. One script may
control an entire conversation, or several scripts may share control. Com-
munication among scripts is kept to a somethat restricted and formal level,
with the {dea that di{ferent scripts may well be written by different people,
normally dealing with ditfercnt area. of a preblem. Within a script there
are no restrictions on such things as branching of control and symbol ref-

erencing.

-69-

) -y
Y /

ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

-70~

Levels
Each script 1s assigned a level. The levei iniicates where the scxipt

fits into the hierarchy 2f the -ystem. Levels are numbered sequentially

from zero (elthough they are usually represented symbolically -- see below).

Level zero 1s ¢he highest -- there will be probably only one script &t

level zero which will be a control script. A script can transfer controcl

directly only to a script whose level is the same as, or lower than, {t:

own ({.e. has a lrvel number equal to, or greater than, its cwn). There

are two indirect ways of getting back up the line which will be described

below.

Symbols
Many things in a script =-- strings, lists, statement numbers, data --

will be referred to by name, rather than explicitly. These names will all
havs the same general form, and will be referred to in this description as
stringnames or sometimes as symbols. A stringname (symbol) may consist of
any number of sny character except (), and blank, as long as there is at
least one letter., Furthermore, the following words are fnrbidden as
stringnames: IF, IS, OF, OR, AND, THEN, EQUALS.

Comments

A scriptwriter may insett a comrent after the end of any statement,
either on the same linoc 1s the statement or on a new line, by preceding
the comment with a dollar sign. Each new line uf commentary must begin
with a new du}lar sign., Otherwise, there are no restrictions on the text

of the comment.

SPECIFICATION STATEMENTS

script name. Each sciipt 1s given a name, which must be unique within the

aystem. 1Its length is limited to 30 characters, which may include anything
but slash or dollar sign. It is speciffed in the first line of the script.
The format is

SCRIPT name
e.k. SCRIPT ROCKING HORSE 2

End of script. The last line of a script must have the following format
ENDSCRIPT

74

O

ERIC

Aruitoxt provided by Eic:

-71-

Level specification. The second line of a script must specify the icevel

of the script., Its format {s

LEVEL number
or LEVEL siringname

e.g. LEVEL 4
LEVEL SUBCATEGORY

The second format (symbolic) will normally be used. Only authorized level
names should be used, because the value of the stringname must be defined in
the level zero control script. Symboiic levels are primarily a convenience
while the system is being built, so that intermediate levels may be easily
added withcut changing all scripts. Norrally, the values assigned to synm-
vbolic level names wi.. not change, and the level of a script will be deter-

mined by what type of script it is.

Statement Names, Entry l'oints, Back-Up Points, Punt Points

For convenience, statements may be labeled. Any stringname may label
4 statement. In the past scripte were envisioned as a collectfion of frames.
tach frame was labeled

XXX XX
vwhere x was any digit. All statements within frames were labeled

XXX+ XX
Any scriptwriter, who wishes to use this means of organizirg a script, may
use statement labels of the form

*AAX XX OT XXN XX
All statement labels must begin in column one. Other than statement labels
no other character may appear until column six on a punched card. The only
exception to the above rule is that a hyphen must apyear in column one to
indicate the coutinuation of a statement. Each ctatement must begin on a
new linc.

One option for the frame statement, which should be used sparingly, en-
ables an outside script to enter this script at this frare (normally other
scripts branch to the beginning of the script). TIhis defines an external
labdel which is treated by the system as if tt were another script name. The
name must therefore contorm to the tequirements for a script name, including
the requirement that {t be unique within the system. Ordinary stetement
labels must be unigue only within the script. The format for the external

70

O

ERIC

Aruitoxt provided by Eic:

-72-

label {e
ENTRY POINT name

where '"name" 1y defined as the external label.

Ancther opcion specififes a convenient point that a student may back
up to i{f confused. The format for this statement is

BACKUP POINT
Each time a “ACKUP PUINT statement is encountered it is stored on an internal
list until ten lccations are on the 1ist. When the elzventh location is
stored, the first will autnma:ically be removed. Should the student wish
to go back he would be returned to the last backup point encountered. If
he wished to go back further he would gv co the second lact backup point
encountered. Should a scriptwriter not specify logical backup points an {n-
ternal system routine will attempt to find a place to resume the dialogue.

At times a student's response may rot have been anticipated by the
scriptwriter. The scripturiter may wish to insert routines at various
script levels to he.dle these problems. The beginning of one of these rou-
tines should be indicated by a statement of the format

PUNT POIN?Z
When the normal methods of responding to student input have been exhausted
and the machine is instructed to

FUNT
it will see if there is a PUNT POINT in its current script, of, for example,
level 2, If there is no PUNT POINT in that level 2 scr'mt, it would see
if there be a PUNT POINT in the level one script from which it came, 1If
there is not, the machine would return coutrol to the generalized punt
routine in level zero.

PUNT POINT's, ENTRY FOINT's, and BACKUP POIMT's may have statement
labv1ls. One point may also be, for example, both a backup point and an
enfry point. Since ENTRY POINT and BACKUP POINT sre separate statements,
they should be on consecutive, separate iines., However, blank lines may

cccur any place within the program,

STRING MANIPULATION
The haeic form of a atring i8 a sequeace of characters enclosed in

double quotes. Any character at all may appear between the pairs of quotes,

-~
—
<N

O

ERIC

Aruitoxt provided by Eic:

-73-

except double quotes and (perhaps) siash, but including single quotes, for
instance.
e.g. '"HER PENSIVE AQUAMARINE EYES DIDN'T BLINK"
A String may also be represented by = stringname, in which case the string-
name may be '1sed in place of the literal string it represents. To name a
string, the SET command is used. Its fermat is

SET stringname TO string

e.g. SET COLOR TO "AQUAMARINE"
SET QUALITY TO “PENSIVE"
SET QUANTITY TO "A THOUSAND AND ONE"

The stringname COLOR is sajd to have the value AQUAMARINE after this state-
ment. Its value can be changed at any time by do!ng another SET.

A string may also Le represented as a concatenation (placing side by
side) of smaller strings, so that

"HER" QUALITY COLOR "EYES"
could be the same string as the first example ahove.

Pure numbers are taken as literal surings even without the quotes
around them. Thus both

SET COUNT T0 4
aad SET COUNT TO "4"

have the 3ame meaning.

Throughout these specifications, whei: the word ''stringname' appears
in a statem:nt “»>rmat, it means that in that position a single name may
be used, with the restrictions specified above fcr stringnames. When the
word 'string’ appears, any of the above forms of a string may be used, as
well as any of the forms to be specified below under List Manipulation.
In particular, the word "string' may stand for a single literal string,
or a single stringname, or a sequence of literal strings and stringnames.

Every stringname {5 a string; but the converse {s not true.

Lists

A list 18 a string :onsisting of a sequence of smaller strings sep-
arated Ly a special character, Although it is stored just like an ordinary
string, and has a name just like any other string, a list is normally used
in a different way. It is used, in fact, as {ts name implied, to keep a

1ist o{ a number of separate items, each of which 18 a string of some kind.

17

O

ERIC

Aruitoxt provided by Eic:

-74-

MINCRCS provides functions to create and maintain lists., 1lo create a list,
or to add aa ftem, the form {s

ON stringname PUT etring
ONBOTTOM OF stringname PUT string

If "stringname" is a previously defined list, these functions add the new
ftem "string"” to the top (beginning) or bottom (end) of the list designated.
If no such list yet exists, either function defines a list with the name
given, and the item "string'' becomes its first item. If "strirg’ is or
includes the name of another list, that entirc list is added tu the spec-
ified 1ist. Lists may also be specified explicitly by using the set
command. Eech {tem of the 1list, that is rot {tself a list, must be en-
closed in doudble quotes,
e.g. SET COLLEGES ‘10 "HARVAPD' 'YALE"™ "RROWN"

To remove an ftem from a list, MINORCA has the command

FROM stringname DELETE string
if string matches come item on the list specifi~d by stringname the first
occurrence of the item on the list is deieted. If there is no match, no-
thing is done. If string ie the name of a list, then all item3 common to
both lists are removed from the list specified by stringname. 1If string
refers literally to an ftem on the list it must be in double quotes. For
example, if stringname is ANIYAL and str.ng is DOG, all elenronts of the
1ist DOG are deleted from the list ANIMAL, However, {f stringnace is
ANIMAL ard striug is "DOG", the element DOG is removed from the list ANIMAL.

List Manipulation

There are a number of functions of lists which can be used to gen-
erate stringe, some of which are thenselves lists. Any of these functions
can be use, wherever & stutement format specifies "string”. (Among other
things this implies that some of the functions can be used recuvrsively.)

The simplast of these functions has the form

1TEM string OF atringname
In this case the ''string” is r~cwally either a number of a stringname whose
value 18 a nunber, and stringname is the name of a list,

e.g. 1TEM # OF COLLEGELIST
or ITEM N OF EQUIPMENT

75

-75-~

1f the list specified by "stringname’ dces not have enocugh items to moke
this a meaningful function, the result is a null striung, or an =mpty list,
a string with no characters, 10 string at all. Occasionally 4 list may
be implicitly paired.

e.g. stringname pair 1 pair 2 pair 3
SALARIES LAWYER, 15000,DOCTCR, 20000, SOl DTER, 5G00

To receive the partner of the first member of the ;1ir use the command

ITEM FOLLOWING string ON stringname

The third list-handling function has the format

TOP OF stringname
Again 'stringname’ is a list. The value of this function is the first item
on the list, but when zall~. for, this function also remuved the first item
from the 1ist. For example, 1f the following two statements were performed
fn sequence

SET VALUEL TO TC® OF ALIST
SET VALUL2 TO TOF OF ALIST

the result would be that VALUEl and VALUE2 wculd be different (prctably),
and ALIST would have two fewer items than it d{d origfnally. The function
1TEM 1 OF gives the same value as TOF OF, but the sidv effects are dif-
ferent.

The last two functions which may be substituted for strinys are

YQUALITIES OF striungnare, stringname
D1FFERENCES OF stringname, stringname

In each case the two stringnames refer to different lists, and the result
{s a 1ist. EQUALITIES gives all the elements common to both lists; DIFFERENCES
produces a 1ist wisth all items ou the first 1ist that are not on the second.

2ay of the list functions may, if necescary, be used on normal strings.

Differentfating Stringnames From Their Values

Occasionally it will be useful to have a sfringname whose imrediate
value is snother stringname, or it may be necensary to have a list of
stringnares rather then a list of the ~xplicit str ngs which they represent,
One problem, for example, might te in the statement

(1) GO TO COLLEGE
or
() 1IF ITEM & OF COLLIGE 1S EQUAL TO "HARVARD" GO TO LOCATION
1} ELSE CONTINVE

ERIC o

Aruitoxt provided by Eic:

~-76~

In (1) o:te may indeed wish to go t¢ location COLLEGE. However, one may also
wish to transfer to the location whose name is the string stored ot COLLEGE.
In (2) one may want to know 1f item 4 of list, COLLEGE 1is equal to "HARVARD" .
Ore may, however, wish to know if the string whose i.ame 18 the value stored
at item 4 of COLLEGE is equal to HARVARD. There are two proposed wéys of
distinguishing a value of ar, item from 1ts name. One method is to precede
the ambiguous term with VALUE OF. The statements would look like

GO TO VALUE OF COLLEGE

GO TO (COLLEGE)

GO TC VALVE OF 1TEM 4 OF COLLEGE
GO TO (1TEM 4 OF COLLEGE)

Would the scripturit~rs 2xpress a preference as to which method they would
like implemented?

In the current version of MINORCA there is only one output statement,
in two forms:

CRT string
and CRT+ string

both forms display the string on the console cathode ray tube, The first
form erases anything that may have been there before, the second adds the
string to whatever is already displayed, starting on tte 7“irst free line.
Special characters for format control may te fncluded in the string. A
number followiug CRT will be interfreted to mean how many seconds the dis-
pley sliould remain on the screcen., Otherwise the display 'would be removed
c{ther whei the next CRT statement was encountered or when the screen was
filled.

There 1s also only one input statement

KEYBOARD
This causes the computar to wait for the uext response from the typewriter
keyboard. Whatever is typed in is stored for analysis or a strini called
INPUT. Wlen type-in is complete, the script resumes at the statement fol-
lewing the XEYBOARD state:rent.

Assocfated with the input and outpul statements are the two control

statements
RECORD
and RECORDOFF
O
ERIC
.

x
‘-

O

ERIC

Aruitoxt provided by Eic:

-77-

These are really system control functions and will protably be executed only
by the conirol script. When record is on, all output and all input re-
lating to a particular console, together with the script name, frame number
and statement number of the statements that generated and received it, is

kept on a file for later examination of printcut.

Arithmetic

MINORCA currently has only the most primitive of arithmetic capabil-
ities. As soon as a need for more involved statistins arises more arith-
metic functious can be easily implemented. There are two statements, each
in two forms.

INCREASE stringname
INCREASE stringname BY string

DECREASE stringnaue
DECREASE stringname BY atring

In each casm "stringname' {s assumed to be the name of a string with a num-
eric value. "String' 1is also normelly efther a number of another stringname
with a numeric value. If the second part of the statement is not included,

the value to be added or subtracted is taken to be one.

The principal branch instruction is of the form

GOTO string
“String" can be the label ¢f any location or a string which contains the
labcl of a location. A stringname that represents a string of one of
these forms, etc.

e.g. GO TO COLLEGKS
GO 10 VALUE OF COLLEGES
or GO TO (COLLEGES)

To get to another script, the appropriate instruction is

CALL namne
where '"name' 18 the name of a script or one of {ts entry points.

¥hen the script wants to get bLack control after an excursion intc
another script or even Just into another area within its own boundaries,
the CALL or GOTO command is preceded by

STORE LOCATION string
vhere "string' has the same form as fur a GOTO statement. Then when the

remote script or section of script executes the statenent

¥i

[E

-78-

RETURN
control will be returned to the original script at the location specified
by the STOKE LOCATION instruction. If the remote script in turn wants to
call on a third script, it may execute a STORE LOCATION instruction which
will cause its address to be stacked on top of a system list, and each
RETURN statement will restore the list to its previous scate.

Since all scripts except the level zero cont-ol script will be called
into action by a higher level script, the way for a script to relinquish
control, to end, step, etc., is to execute & RETURN. Control then ulti-

mately returns, as it should, to the control script.

ANALYSIS
The 1F statement is the basic decision-making statement of MINORCA.
It has seven elementary forms, which are ‘

IF string EQUALS string THEN statement ELSE statement

IF string IS EQUAL TO string THEN statement ELSE statement

JF string IS NOT EQUAL 70 string THEN statement ELSE stetement
IF string 1S GREATER THAN etring THEN statement ELSE statement
IF string IS LESS THAN string THEN statement ELSE statement

IF string 1S EMPTY THEN statement ELSE statement

IF string IS NOT EMPTY THEN statement ELSE statement

The first three forms (first two identical .n function) ara generul tests
for string equality, but can also be used on numbers. The 4th and 5th forms
expect the strings to be explicitly or {mplicitly numeric. The last two
forms are designed to test lists. Any statement may follow the THEN ~ud
ELSE, including ancther IF statement (this is discouraged). 1f the con-
dition 18 satisfied, the statement following the THEN 18 2xecuted, and that
i1s succeeded by the next numbered statemert in the script, bypassing the
ELSE clause, if thare is one. The ELSE clause wmay be omitted; {f it {is
pcesent, its statement is executed 1if the conditica is not satisfied, Con-
trol agaln proceeds to the next statement in the program. If the ELSE
clause is omitted, control ptoceeds directly to the next statement of the
script when the condition 18 not met.

More conditional phrases of the form

string condition striog
or string condition

can be added between the IF and the THEN. The various condition phrases

O

RIC

-
] o

O

ERIC

Aruitoxt provided by Eic:

-79-

are then joired by AND, OR, Aiv IF, OR IF. Since this is all very nuch
like Englisi construction it is much easfer to understand than to de-
scribe. The restit {s compound statements such as

IF ALIST 1S EMFTY AND AGE IS LESS THAN 14 THEN SET CHANGES TO "LoW'"

IF A EQUALS B OR C EQUALS D AND IF E IS NOT EMPTY THEN CCNTINUE ELSE GOTO F
The second example illustrates the use of the CONTINUE statement. It may
be used anywhere as an ordinary statement. However, it does nothing. It
aleo fllustraters the importance of the hierarchy of the connectives. These
connectives combine ~he two adjacent conditions to form one. This causes
no problem i1s all the connectives In an IF statement are the same, but when
they are not, the order in which the conditions are combined affectec the
meaning of the statement., The connective hierarchy, in the order in which
they are applied is AND, OR, AND IF, OR IF.

Keywoc¢ds, Decomposition and Recomposition

For this discussfon the reader i85 assumed to have some familiarity
with the ¥LIZA language. The differences between ELIZA and MINORCA in the
area of Yeywords, decomposition and recomposition will be discussed.

One of the main problems with ELIZA is the fact that nost dictionaries
are only of use to the small scrip: in which they ace specified. 1In MINORCA
dictionaries may be specified anywhere and used anywhere, Each dictionary
nust tegin with the staterent

DICTIONARY stringname
and end with the statement

END DICTIONARY

Ia between these two staluments aay number of keywords may be defined
fu the form

keywnitd priorfty number (decomposition rule 1) statament
(deccuposition rule 2) statement

e.g. College 109 (0 interested O College) GO TU LOCATION.1
(0 not interested 0 College) GO TO LOCATION.2
(0 College Q) ON OUTPUT ZUT ITEM 1 OF ANALYSIS, CONTINUE

The keyword is the word for which one is looking (Each keyword must ve pre-
ceded by a minus sign. Blanks are ignored so keywords may te phrases.).
The priority number fwhich {f omitted is wssured to be 0) can give a keyword

a higher value than the rest, thus csusinyg it to ve looked for fivst. The

8o

-80-~

decnrposition rule is macched. *If there is no match, the next decompos-
ftion rule is scanned, then the next keyword until the end of the dictionary
is reached. If no match is encountered in the dictionary, control is
returned to the next statement in the script from which control originated.

In MINORCA keyword snalysis of a string is called for explicitly
by the ANALYZE statement. Any string may be analyzed, although INPUT
(which contains the latest typed response) is assumed if a string is not
not specified. The form of the statement is

ANALYZE 1IN st.ingname
or

ANALYZE string IN stringnane
String>1s included, is the string to be analyzed. Stringname i{s the name
of a dictionury of keywords.

One call for analysis might look like

SET LOCATION.1 TO “'COLLEGE"
SET LOCATION.2 TO 'JOB"

SET LOCATION.3 TO "MILITARY
ANALYZE IN DECISION

ANALYZE IN DON'T.KNOW

The first three statements establish transfer points from the dictionary.
The input will first be analyzed in DICTIONARY DECISION. 1If no match {s
encountered in that dictionary it will then te looked up in DICTIONARY
DON'T KNOW.

— . _

Note that the 1ist c.1lled ANALYSIS in the above dictionary refers to
elements of the deccmposition rule., Iten 1 of analys's ls all wotds
preceeding the word college; item 2 is college.

O

ERIC ”

Aruitoxt provided by Eic:

_81..

AFPENDIX

This appendix provides a formal definition of the MINORCA language.
It i{s a definition oi the form of the languaga rather than a grammar for
generating the language, although the definition czuld be converted to a
grammar without much difficulty.

The form used here is a variation on hackus normal. Single lower-
case words are used for elements of the language being defined. Square
brackets [] enclose an optional component of a right hand part of a rule.
Square brackets followed by a degree sign []° encloses a component which
can occur any rumbar of times or not at all. Exclamation point indicates
a choice between the components it separates. The terminal chracter per-
10od 1s represented Ly the word "period" since it is also used as a meta-
chardcter, Carrfage return or end of card 1s rcpresented by 'end-of-1{ne'.

Blanks are a special problem. Outslde a literal string, wherever
one blank may or must occur, any number may be used. In certain cases,
the required presence of at least one blank i{s indicated by the word 'blanks”.
Otherwise, the general rule 1is that every stringname and number must be
delimited by at least one blank 1f {t {s not otherwise delimited by a
comma or a double quote, and that a statement label must begin at the be-
ginning of a line.
char ::= AIBIC!...1YIZ10O1112),..19] perfodi=i4l-1"1R1/1§
digis ::= O1112)...19
nondigit ::= A1BIC!...!1Y1Z! perfodl=]...I$
xchar :i= char! blank!,1(1)
number :i= [+1~]} digit [digit])®
literal ::= '[xchar)®"lnumber
stringname ::= [char]® nondigit {[char]®l VALUE OF stringl (string)
label ::= stringname
striug ::= string (string]®
string ::= literal !

stringname |

ITEM string OF string |

TOP OF stringname |

ERIC 85

Aruitoxt provided by Eic:

Rl TP

-82-

EQUALITIES OF stringname, stringname |
DIFFERENCES OF stringname, stringnamel!
ITEM FOLLOWING string ON stringname

scriptname ::= xchar [xchar]®

script i:= SCRIPT scriptname e.d-of-1line
LEVEL string [comment] end-of-line
[[statement [comment]| comment) end-of-line]®
ENDSCRIPT end-of~1line
comment !:= *{xchar)®
statement !:= blanks COMMON stringname [,stringname]
ti= label DICTIONARY end-of-1ine
[dicticnaryentry end-of-1ine)®
blanks ENDICTIONARY

::= blanks ENTRY POINT scriptname

t:= dlanks BACKUP POINT
ti= blanks PUNTENTRY
' t:= [label) blanks command

1 command ::= CRT [+} [(nusber)] striag

i:= KEYBOARD
:i= SET stringname TO string [,string]
b ::= ON stringname PUT string (,string}
::= FROM stringname DELETE string [,string]
::m INCREASE stringname [BY string]
1:= DECREASE stringname [BY string]

:t= ANALYZE(stringname,) stringname

ERIC 8%

Aruitoxt provided by Eic:

o

ERIC

Aruitex: provided by Eric

APPENDIX F

The Addition of Statistical Prinitives to TRAC

Charles S. Wetherell

-83~

ti= CALL scriptname
:i= RETURN

t = PUNT

$i= BACKUP

ti= IF condition [AND condition! OR condition! AND IF
condition! OR IF condition]®

- THEN ccmmand [ELSE command]
condition ::= string EQUALS string
:i= gtring IS EQUAL TO string
s:= gtring IS NOT EQUAL TO string
t:= gtring IS LESS THAN string
:i= string IS GREATER [HAN string
si= gtring IS EMPTY
t:= string IS NOT EMPTY
dictionaryentry ::= EQUIVALENTS literal, literal {,literal)®
::= EQUIVALENTS literal=literal (=literal}:
ti= litersl decompositionrule end-of-line
{blanks command end-of-1line]*
decospoeitionrule ::= (element (element)®)

element ::= number! literall (stringname)

Within a dictionary entry some of the usual rules are changed slightly.
An element that 18 a literal need not have the usual double quotes. Also
the form (n), where n is a number, will be recognized as a valid string in
the commands following a decowposfition rule. (Its value 18 the match for
the nth element in the decomposition rule.

ERIC .

Aruitoxt provided by Eic:

INTRODUCTION

This paper [resents a package of statistical operators designed to
operate within the context of the string handling language TRAC.* The
need for this package arose within a research project conducted by the
Farvard Graduate School of Education. Before the work was very far ad-
vanced, it was clear that a careful analysis of the structure of TRAC and
of the statistical problems to be solved was needed. Once this analysis
was made, tte implementation of the package was relatively easy. However,
several limitations were recognized and when the work w3s done, {t was
clear that the package could be extended in several directions. 1 shall
discuss the history, design, and future of the package and the use of these

extensions in other TRAC systems.

ry
TRAC {s the trademark of Rockford kesearch Institute, Inc., Cambridge,
Massachusetts, for its striung handling language.

X -85-
ERIC 8J

Aruitoxt provided by Eic:

[E

THE BACKGROUND OF THE PROBLEM

The need for a statistical package within tho language TRAC first
arose at the Information System for Vocational Dz2cisions Project (1SVD),
funded by the United States Office of Education and administered by the
Harvard Graduate School of Education (Tiedeman, 1965). This project, a
large one, will develop methods to train students in the methods of de-
cisfon-making, particularly in the choice of vocations, through the use of
computer-controlled consoles and individualized personal guidance. Students
will have access, via the computer, to large data bases of informatfon about

decision-making, the '"world of work,"

the local employment and economic
situation, and their own persvnal data (perhaps compounded with data about
other students). The project investigstors will have to collect, collate,
evaluate, and compile this data. To do this, they must have a rtatistical
plcture of the student's activities with the data base and stat.stical
unethods to transform the raw data into a form suitable to students.

The student's interaction with the computer will be controlled by a
"script'. As the student 'plays' the script, he will, possibly unknowingly,
call varfous programs to life and cause Informations to be retrieved from
the ceveral data bases. This information, hcwever, may not appropriate
for the student as it stands. If 4t Is not, the script will ceuse the
proper statistical actions to be taken. These may be as simple as scaling
the numbers and as complicated as discriminant analysis. It i{s also the
responsibility of the script to interpret the information for tha student
within the context of the particular play of ‘he script in which the student
is engaged.

This all assumes a control language with whicn tha investigator can
wanipulate the progtams and data structures of the system int~ a script.
Basically, that control language is TRAC. Actually, the language which
script writers use will be considerably more sophisticated. Presently,
this higher language is juterpreted by the TRAC processor and certain TRAC
procedures at the time of the execution. Eventually, it may be compiled

at the time it is written, with few references to the TRAC Interpreter.

-86-
O

RIC

o o e i)j

O

ERIC

Aruitoxt provided by Eic:

-87-

However, the compiler may be written in TRAC and the TRAC interpreter may
have full control of the computer while the compiled program is run. The
object code may also be TRAC.

Since the investigator needs statistical powers in the two contexts
and since both contexts will involve the use of TRAC, it is clearly nec-
esgary to attempt the statistical work within TRAC. ‘the solution 18 to
add a block of primitives to TRAC which will perform the operations needed
without disturhing the present set of primitives. Fortunatery, there exist
a set of statistical operators which £it the form of TRAC primitives and
which produce the statistics which ISVD needs.

o
IS

THE STRUCTURE OF TRAC

TRAC {8 a string handling language proposed and first presented by
Mooers and Deutsch (1965 and 1966). It bears a good deal of resemblanre
to several other string and list processing languages, most notably LISP,
GPM, COMIT, and SNOBOL. The basic entities with which {t operates are
stiings of BCD characters and it manipulates these with a relatively simple
interpreter. The basic philosophy of TRAC is that of a macro-expansion
language. More on TRAC will be found in Appendix A, Moocers' definitive
article (1966).

The arithmetic capability of TRAC is very limited. The arithmetic
operations all perform Arabic arithmetic on B8CD int-~ger strings, that is,
they operate right to left on strings of indefini- length by manipulation
of BCD characters. While this provides arithmetic of a natural sort, and
may be expanded to simulate all arithmetic operations, it {s inefficient
for anything but simple manipulation of integers. Thus, if a gtatistical
package 18 to be added to TRAC, a new set of arfthmetic operators will be
needed which will take advantage of the floating point arithmatic provided
by most computers, However, they must have the form of the TRAC primitives
and the data on vhich they operate will have to confcrm co the data storage
procedures of TRAC,

The Beaton set of linear o;<rators iw precisely this type of package.
Theae operatore map various combinations of matrices, vectors, and scslars
onto other combinations. With the operators, all of lineary parametric
statistlcs* may b2 done, that is, they are a complete basis for most of the
standard statistics. Further, each operator may be cgst in the form of a
function with a fixed number of arguments. Egch argument is {tself an array
of real numbers. With these onperators and supporting functions to wanip-

ulate arrays, a statistical package for ISVD could be constructed.

‘"Statlst1c1" will be used in twe senses in this paper. In one sense, {t
refers to & body of knowledge lying within mathematics and in the other, it
tefers to individual nuabers containing information about certain systems.
1he usage should be clear from context.

-88-
O

ERIC N

s A

T AT e e s o g L

ERIC

Aruitoxt provided by Eic:

-89-

TRAC, as designed, 18 modular. That is, the addition of a primitive
function involves oniy the addition ¢f one more name to the list of functions
available to cthe processor. It would be possible to have an interpreter
which was impotent because 1t was not supplied with primitives. Any given
function may be eliminated and the others will not be affected. No function
relies oa any other and 21l common pleces of code are contained within the
body of the interpreter. The addition of this statistical package can be
made without affecting the fest of TRAC. ISVD, and other users, will be able
to add or delete the package at will. I shall return :o this point later.

(oD}

THE BEALON OPERATORS

Th? basic concept behind the pacrage of functions which I shall
develop for inclusion in TRAT 18 tha. advanced by Beaton: simply, every
statistical operction on a linear model may be handled by a 'small" set
of operators. In any given situation which one wishes to study statis-
tically, there will be several variables to be measured, and of these
variables, it is to be hoped that some will Jepend on the others. A
model 18 assumed for the dependency and variovs statistics may be calcu~-
lated to check the validity of the model. Beaton showed that if the ob-
servations were arranged in a matrix in a certain way, then there is a set
of about ten operators that will calculate, singly and in composition,
every statistic based on a linear model for the dependency relation. Fur-
ther, 1t can be shown that any curvilinear model may be reduced to a linear
model. Thus, the operators of Beaton suffice to do almost all possible
statistical calculation. They fail only when the statistic needed is one
based on frequency counts ~v similar discrete groupings of continuous
variables. On the other hand, there are, compared to the number of linear
statistics, few of these mavericks, albeit severa] of them are quite inportant.

The Beaton operators take as arguments arrays; scalare, vectors, and
matrices. Data in TRAC, ECD strings, aie stored as sections of a long vec-
tor. It has long been known that an array may be etored as a vector by
develcping an appropriate mapping between the subscripts of array elements
and the linear subscript on the vector. Thus, the statistical data with
which ISVD will transact may be handled by TRAC without doing violence to
the storage mechanism of TRAC. The set of Beaton cperators and the atten-
4ant arrs: manfipulation primitives fit the specification which we laid out
for the statistical package. Following this reasoning, ISVD decided to
implement the package within TRAC.

O -90-

ERIC]

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

THE STORAGE OF ARRAYS

When the desigu of this package was begun, I realized that limiting
arrays to the two dimensions required by the Reaton operators was an arti-
ficial restriction. So arrays may have arbitrarily high dimensions: that
is, the dimension may be any integer from zero on up. Similarly, subscripts
may take any negative, zero, or positive integral value. The typical array
will be n-dimensional and the subscripts along dimension i will range from
a lower bound ll to an upper bound U with the only restrictions being that
1, and u

i i
difference u, - 11 will be kno'm as the range of subscripts along the di-

both be intigers and that 11 is less than or equal to ug- The

mensioa 1. Arrays elements may be any real numbers, as expressed in decimal
notation.

Of course, no computer i{s going to be able to handle an array of di-
mension 40 and script range 10 along each dimensfon. That would require
at least 1040 cells of storage and no computer comes near that figure. An
67 would also be difficult,

even {f the lower bound along that dinensfon were the same; similarly an

array with an upper subscript bound of 123 x 10

array with an element of the size 1080 wouiZ be difficult. The reason for
these problems is that we would like to nake our array storage ~nd arithmetic
use the arithmetic capacities of the machines upon which the primitives are
run. But most machines have a limited range ¢f sizes of numbers which they
can accept and manipulate. They also all have severely limited storage cap-
acities. Sv, although the coding for the package is in ALGOL without
reference to a specific machine or to the inherent hardware limitations of
most computers, these bounds will have to be kept in wind in any actual
implementation.

The storage of strings i{n TRAC makes some concession to the structure
of coemputers. Intuitively, a string is a sequence of c.aracters, linearly
ordered and finfte, possibly having a name. Mooers' method of storage
makes thls concept somewhat nore explicit so that {t may be mechanfzed.
1n the :rocess, some conceptual simplicity is lost. The conzession for-

malizes the relation of strisg and name anid required the use of certain

-91-

O

ERIC

Aruitoxt provided by Eic:

-92-

heading information which travels with the string. The amalgam of string,
name, and heading is a "form".

The heading information explicitly points to the endt of the string
and the name and from the structure of a form, pointers to thelr beginnings
may be calculated. It also contains some abstruse material of use to the
interpreter. The actual order of these elements {s

<type- <hash-code> <{nternal-text-pointer> <end-of-text-pointer>

<end-of-nume-pointer> <text-string> <name-string>

Each element, except the <tixt-string> and the <name-string> are the BCD
strings which weve to be stored. The <type> 18 a code which designates the
type of the string; p-esently there are primitive, string, and machine type
codes and I am adding array type. The <hash-code> is a technical device
used by the interpreter. 1t {s descvibed for completeness' sake only. The
<internal-text-pointer> i{s an index manfpulated by several of the original
primitives. It will not te used by any of the primitives in the array pack-
age and wi)l be employed for a different purpose. The <end-of-text-pointer>
coatains the displacement of the last celi of text from tha <type> and the
<end-of-name-pointer~ contains the dieplacement of the last character of
the name string. These last two pointers simply formalize the concept of
the ends of the string and nare,

If the TRAC interpreter is given the command

#(ds,waldo,This 15 a string.)
1t will create a form which looks like

Cell 00 <iype> » 2

Cell 01 <hash-coce>) We use neither

Cell 0z <{internal-text-pointer> of these.

Cell 33 <end-of-text-pointer> = 21

Cell 04 <end-of-name-pointer> = 26
Cell 05 'T' (i.e., the literal BCD chara..er T)

cell 06 'R'
Cell 0/ 'y
Cell 08 's'
Cell 09 ' !
Cell 10 ¢!
Cell 11 's'
Cell 12 v
Cell 13 'a'
Cell 14 v

O

ERIC

Aruitoxt provided by Eic:

~-93-

Cell 15
Cell 16
Cell 17
Cell 18
Cell 19
Cell 29
Cell 21
Cell 22
Cell 23
Cell 24
Cell 25 '
Cell 26 'o'

Ermn €009 mn e

The form will be positioned in a long integer typed vector in storage, the
"f" vector, with only the address of the <type> of the first form kept as a
reference point. Forms are found when needad by a leap-frogging technique,
using the <end-of-name> pointer to find the next fori when the form being
inspected does not fit specifications of the one being searched for. The
forms are laid in storage at the right end of the "f" vector, with :iew forms
added at the left. Thus storage looks like
free-storage:form-n...:form-3:form-2:form-1

with low numbers denoting older forms. The whole mechanism is relatively
simple and makes it easy to houseclean and garbage collect storage. More
on this {s in Mocers, 1966.

The problem is to fit array storage in with this well-established scheme.
A method to map arrays onto vectors is well-known and 1 shall use the one
descrited in the MAD manual. Combining 4t with TRAC will create an efficient
and flexible storage method, at the same time preserving the struciure and

mechanisms of TRAC.

O

[E

O

RIC

Aruitoxt provided by Eic:

W R s e T e e g ¢ e a e b L RATT e YLk W e e n % s e s

STORAGE DESIGN

The <type> for arrays will be 4. The <hash-code> will be left as it
ifs now. The <{internal-text-pointer> will not be needed for the package and
s0 is renamed the <dimension>. This will be an integer from zero up and
will be the divension of the array which the form stores, The next two ele-
ments of the form will remafn as they were, as will the <name-string>.

The major change comes in the <text-string>, which now will contain a com=-
bination of integers and real numbers. The fategers will be subscripting
information and the real numbers the actual elements of the array.

To convert the subsciipts naming a particular element of the array
into a position in this vector, a mapping function must be used. \f the
matrix is a scalar, there is no mapping function and the value of the scalar
is simply contained in one word, the fifth word of the <type> and the <end-
of-text-pointer> contains the integer 5, If the array has dirension d
greater than zero and if 1, is the lower subscript bound along dimencion {
the upper, where { ;s between 1 and d, then we can define a number

and u

b by

i

d d-1
1) b=6+2d - ¢ (1 (., =), + 1)} Q1

=1 jug J 3 D

d-1+1

The number b will be known as the 'base” of the array mapping function.
Now i8 an element a . of the array i{s given and we wish to cal~
8484-1°" 5281
culate the linear subscript of the element, thrn
d d-1

2Yr= £t {0 (u, ~1,)) (s

ERLLAURRY 1) +b

d-1+1

The <type> cell of the form is (arbitrarily) assigned the lincar subscript
zero. 1This means that the array element with lowest possible subscripts
will have linear subscript 6 + 2d. This leaves precisely enough room for
the subscript Infcemation, required for the calculation of these lfnear

subscripts, between the <end-of-name-pointer> and the first artay element.

-94-

PP
A\]
-
-

S 8 NI M i i e o

~95-

The format of the text string will be

<base> <11> <uy> <12> e <1d> <y ,>

d
<a > .. <@ >
ldld-l v 11 lﬂld-l cee Uy
<a > e
Ll oo L4 11
‘ “a <a >
udud"l e Ul

The elements of the array are laid into the form with theis right-most sudb-
scripts varying most rapidly. Also, the right-most subscript bounds, 11 and
u;s occur on the left end of the form. This makes access to them easier
in later computations.
The ALGGL array 'waldo'. declared
array waldo[-1:0,3:5,-2:0]
has a total size of 18 elements and a dimension of 3. The subscr{pt infor-

mation for "waldo" {is

3 -1; uy = 0; range, ~ 1

1, =3; u, = 5; range, = 2

2

11 = -2; u, =0 range, = 2.

1

D b=b+2:3-{3:3(-1~1)4+3:(3-1)+ (-2-1}]
=12 - [-18 + 6 - 3)
= 27

The element waldo ; 4 .2 mars o the linear elerent
1<

&) v = {33 (1-~1)+43.(3-1) + (-2 - 1)] + 27
« 18+ 6 -3+ 27
- 12
This is the first element of the array in the form and {s precisely £4+2d

words from the <type> cell. Similarily, valdoo 5.0 has liaear sudscript
LI]

5) r = [3:3 (0
= -9 + 12
= 29

which is 17 cells from the first element and which uses the 18th word of

array storage.

-9§~

- +36G-1)+(0-1)+27
-1+ 27

This 1s precisely correct for an array of 18 elements.

This

e<ample array will look like the following diagram when it is stored as a

form:

Cell
Cell
Cell
Cell
Cell
Cell
Cell

Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell
Cell

Cell
Cell
Cell
Cell
Cell

There is
the "f" vector

mixed together,

00 <type> = 4 (for array type)
0l <hash-code>

02 <dimension> = 3

03 <end-of-text-pointer> = 29
04 <end-of-name-pointer> = 34

05 <base> = 27
06 <1,> = -2
07 <up> o= 0
08 <12> =3
09 Wy = 5
10 <13> = -1
11 <ug> 0
12 valdo_l‘a‘_z
13 waldo_1‘3‘_1
14 vcldo_l.a‘o
15 waldo_l“"_2

29 valdoo's‘o

30 'w' ({.e., the iiteral BCD character w)
31 ‘al

32 1’
33 ‘'4'
36 ‘o
one difficulty with the implementation of this plan. 1In

there will be integers, real numbers, and BCD characters

Fortunately, the BLD characters may be coded as integers,

but there 13 no way to mix real and integev quantities in the same vector

in ALGOL. One sclutson is to 8add a vector for the storage of rcal quanti-

ties which will be controlled by the same stack pointers as the "f' vector.

I1f this is done, however, there will be great gaps in both the Integer and

ERIC

Aruitoxt provided by Eic:

lul

O

ERIC

Aruitoxt provided by Eic:

-97-~

real storage, alternating with one another. Wherever a real number has been
stored, there will be a blank space in the "f" vector and vice versa. A
solutisu which avoids this problem is storing pointers to the resl vector
with the heading information for the form. The <text-string> for che
form would then be packed down into real vector and eliminated from the "f"
vector. However, arrays handled this way would be difficult to manipulate,
With both these solutions, a fifth vector is added to TRAC's storage system,
and this 1s also unfortunate, for the four vector storage system of TRAC
makes it easy to do variable storage allocation. This possibility would be
destroyed by the addition of a fifth vector.

The approach I have taken 1s to add the fifth vector, the "a' vector,
using the stack controls for the "f'" vector. However, in the actual im-
plementation of the package, I will declare the two vectors tu be "equiva-
lent"”, under the MAD or FORTRAN mesning o. the word. This will mean that
there are rcally only four vectors and that the program can fetch and store
in either real or integer mode from any elemert of the combined "a-f" vec-
tor. In any implementation, it would even be worthwhile to sabotage the
comp:led object code to achieve this result, even if the language In which
the package is written at source level does not allow the declaration of

equivalence as ALGOL doea nnt.

101

i
{
i
|

D ke

O

ERIC

Aruitoxt provided by Eic:

THE PRIMITIVES

In this section the primitives are described and their definitions

set out.

Array Defini<ion

#(as,N,d,1 2d + 3 arguments.

d,ud,ld_l....,ll.ul).
The array named N is defined with dimensfon d and subscript bound pairs

11 and ug for 1 between 1 and d. N {s a BCD string and d and the bounds

pairs are BCD integers. Extraneous arguments are ignored. If there are

fewer than d bounds pairs, the function is not executed. The elements of

the array are all set to zero. This primitive corresponds, in some sense,

to the ALGOL

array N[ld:ud.ld_l,...,llzull;
As with all forms storage, any form of similsr name i{s erased from storage,

wvhatever its type.

Dimension Value

#(av,N). 2 arguments.

The dimension of the array named N is returned as a BCD integer. If

R {8 not an array or i{f N does not exist, the value fs null (not reroc).

Subscript Bound Valuea

f(ab,N,1,8). 4 arguments.

The value of the sth {i.e., upper or lower, coded 1 or 0, rezpectively)
subscript bound of the array N along dimensfon i is returned as a signed BCD
integer (the sign is used only {f the value {s negative). 1If { is greater
than the dimension of N or 1f N {8 not an array or does not exist, or if s

i1s not rero or one, the value {s null.

Convert to Integer

I(ac,N,sd,ad_l,...,sl). 2 + d arguments.

~98-

102

O

ERIC

Aruitoxt provided by Eic:

-99-

This primitive returns as value the grvitest integyer less than or

equal to N where d 1s the dimcasfon of N. If there are not
ILYISERRRTLIY

enough subscripts specified, i{f a subscript is out of bounds, 1f N is net
an array, or if N does not exist, the value of the function 18 nuil. The

returned value is a signed BCD {nteger.

Set Array Value

#(ae,N,s 1'H't£'tf-1""'t1)' 3+d + f arguments.

d.sd_l.....s

This primitive replaces the value of N with the value
8418412715

of Nt ¢ ¢ where d and f are the dinensions of N and M, respac-
£rof-20" L

tively, and the 8y and the tJ are BCD integers. If either M or N does not
exist, or either M or N {s not an array, or if any subscript is out of
bounds, or if there are not enough subscripts, the replaceiment 18 not per-

formed. The function has null value.

Read Array

#{ra,element-1,element-2,.,.,element-n). At least one argument.

This is simplified I/0 for arrays. Input is one real value per line
on the console. Each “element-i" {s efther an array name, or an array
name followed by an asterisk, subscripts, and another asterisk. The sub-
scripts are BCD {integers and are separated by asterieks, An array which
does not exist, an element which {8 not an array, or one for which there
are not enough subscripts or for which the subsczipts are out of bounds
will be fgnovred. 1If an element is simply an array name, the eatire array
1s read in, the rightmost subscript varying most rapidly. Excess sub-
scripts within an element will be igaored. The valus of the function is
null. The numbers read from the ronsole will be in "F'" or "t" notation
8s that is understood within MAD., Different implementts*ions ray give
different error indications deperding on local 1/0 routines or differcnt

forms for the input.

Print Array

#t(pa,element-1l,element-7,...,element-n), At least cnz argument.

105

et N g o

[

O

ERIC

Aruitoxt provided by Eic:

~-100-

This is similar to "ra", except that arrays or array elements will

be printed on the console in "E'" nectation and a simplified format.

Read by Format

¢#{rf,format ,device,element-1,element-2,...,element-n).

At least three arguments.

The format string is of *he same nature as that used in FORTRAN or
HMAD, The "device" is a number or name which the lacal operating system may
recognize as a call for use of an input devicc. The irput 1is read off the
device named according to the format string. The foraat string is an or-
dinary BCD string in TRAC which also conforms to the local rules for format
statements. Error indication and recovary will depend on the local system.

As in "ra", elements in error will be ignored. The value is null.

Print by Format

#(pf,format,device,element-1,element-2,...,element-n).

At 'east three arguments.

The same as ''rf", except that the values are read from thc

named onto the device.
Array Addition

#(aa,A,B,C,2). Five argumeuts.

If A, B, and C are three arrays of the same dimension an. e
range aloug each dimension, then C {s replaced by the element su d
*
B. If A is a scalar and B and C are similar arrays, then C §s =ty

B with A added to e¢ach element. The value of the function is «

of Z. The value is Z only when the addition is unsuccessful, §i. . owne
of A, B, or C 18 not an array or does not exfst, or when there :

sion or subscript rarge error. Z i{s any BCD string and 1is plac.

active or neutral string 43 the call for the function was acti al*

&t - —

+
Two arrays are similar if they ate of the same udirensfon, and . -

script range along each dimension {8 the name. The arrays need
the same subscript bounds pafrs; it fs only necessary that “i’:‘
ui'-li‘ for each dimension.

“Ihis set of error conditions, {.e., wrong dimension, subscri;?

tounds, non-existence of an array, or form not of array type v., wn
as the standard ertors and the placement ¢f Z {in the approprfa‘c LR,
will be known as a "dbranch to 2" or a "g-branch".

104

O

ERIC

Aruitoxt provided by Eic:

-101-

Array Multiplication

#(am,A,B,C,2). Five arguments

The arrays A and B are multiplied together in the manner normal to
methematics and the result is placed in C. If A and B are scalars or are
vectors of the same length, C must be s scalar. A and B must always be of
the same dimensfon; the standard fdentificaticn of a vector with a column
matrix will not be allowed, for example. The one exception is that 1if A
is a scalar and B and C are similar matrices, C is the element by element
multiple of B by A, In any case, C nceds only the right subscrapt ranges
and dimension to be a resultant matrix; the actual size of the subscripts
is not checked. The value is null. A branch to Z {s taken on the standard

errors.

Array Inversion
#(ai,A,B,D,2). Five argurents.

If A and B are similar square matrices and D is a scalar, then the
inverse of A is placed in B and D contains the determinant of A, if the
matrix A is non-singular., If the matrix A %s eingular, both B and D are
set to zero and the branch to Z is taken, as it {s on tlie standard errors.
The fuverse will be calculated by a conbined direct and fterative method
and will be considered correct when it falls within a pre-assigned tol-

erance.

Array Transposition

#(at,A,B,2). Four arguments.

If A and B are matrices and {f the sultscript ranges of B are the
reverse of those of A, then B is replaced by the transpose of A. The

standard errors cause a branch to 2,

Becaton Routinz DMD

fi(af /A,B,C,2)., Tive arguments.

If A and C are sinilar square ratrices and B is a vector with the

sarre lenzth, then

O

ERIC

Aruitoxt provided by Eic:

-102-

cij = Aij/(Bi'Bj)

where 1 and J are normalized to lie between zero and the subscript range,
*

inclusive. If A, B, and C are all scalars, then
c = a/Bl.

If any of the Bi are zero or {f any of the standard errors occur, the function
is not performed and the branch to 2 1is taken. “he value of the function 1is

null.

Beaton Routine SCP

#(ag,A,B,C,2). Five arguments.

if A and C are similar square matrices and B {8 a vector of the sanme

iength, then

cij = Aij . Bi . Bj

1f A, B, and C are scalars, then

C = ABZ
The standard errors cause a uranch to Z. The valu: {s null.

Beaton Routine SWP

#{ah,A,B,k,2). Five argurents.

If A and B are similar square matrices with suoscript reange n and k

is an integer with

and Akk # 0, then

T L VRN,
Akk 1, ¢k

By = A/ 3Pk

*In all these functions, we shall think of the subscripts as lving between
zero and the range for “lLie particular sudbscript, This {s, of course, nnt
true, since subscripts may lie between any two arbitrary bounds. However,
thinking this way makes the mathematics clearer and to be correct, one need
only add the appropriate lower subscript bound to each subscript.

106

Vo N ey ey

O

ERIC

Aruitoxt provided by Eic:

-103-

Bik " MM 1 F K

B = Vg

k

If Akk = 0 or one of the standard errors occurs, the b anch to Z 1s taken.

The value {s null.

Beaton Routine DVEC

#(a},A,B,2). Four arguments.

If A 1s a square matrix and B 35 4 vector of the same length and n is

range of the subscripts, then {f

Aii >0 fori=20,...yn
then B, = VAii

If any element of the diagonal of A is less than zero or if sny of the stan-

dard errors occur, the branch to Z {s taken. The value is null.

Beaton Routine DIRPRD

#(ak,A,B8,C,2). Five arguments.

If A is a vector with subscript range m and ¥V 18 a vector with sub-

seript range n and € {8 a vector with subscript range (n+1l) (m+1)-1, then

Al . Bj'

If a sra~Jovd error occurs, the branch to 2 is taken. Otherwise the value

C i=9,...,m J=0,...,n.

al +4
is null.
Scalar Absolute Value

(sa,A,B,Z). Four arguments.

if A and B are scalars, B is replaced by the absolute value of A. On

the standard errors a branch to 2 is taken. The value {s null.
scalar baponentisl
f(se,A,B,2). Four argucents.

If A and B are scalars, B is replaced with eA. On the standard errors,

the br.nch to Z {8 taken. The value is null.

107

-104-

Scalar Logarithm

#(s1,A,B,2), Fcur argunents.

If A and B are scalars and A 1s greater than zero, then B is replaced
by the natural logarithm of A. If A is less than or equsl to zevo or a

standard error occurs, the branch to zero is taken. The value is null.
Scalar Power
#(sp,A,B,C,2). Five arguments,

If A, B, and C are all scalars, then C is replaced by AB as long as
that operation results in a well-defined real number. If it does not, or

if there is a standard error, the branch to Z is taken. The value is null.

O

ERIC 10%

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

THE CODING .\ND IMPLEMENTATION

This set of TRAC opevators nas been built on the basis of the standard
TRAC interpreter as described by Mocvers (1966) and as coded in ALGOL by
Mooers and Deutsch (1966). This coding has been used as the model for a
TRAC {nterpreter in MAD, to be run on the MIT-CTISS time-tharing system.

The MAD-TRAC system haa been running for about eight months at ISVD. 1
have coded the primitives in ALGOL to match that of Mooers and Deutsch for
two reascns: the coding will be easily usable in other TRAC systems based
on the ALGOL-TRAC and it will be easily translatable for use with the ISVD
interpreter. The coding presented here {s the ALGOL, but it {s only the
first step in a two-step project. The second one will be taken as needed
within ISVD.

The only additions I have made to ALCOL-TRAC are the variables "charmi"
and '"charpl", containing the BCD characters '-" and "+" respectively, the
switch diag, which is used for dlagnostics and error recovevy, and several
other procedures described below. Each of the primittves is coded as a
block which will €4t with the other primitives in thc interpreter without
mutual interference. 7These blocks may only be entered at the top and all
exits are unconditional transfers. Primitives freely manipulate the sev-
eral pointers availadle in the interpreter and the elements of the various
stacks, as do the procedures. The primitives are individually commented
upon in tiue code. There has been a conscious effort to make the cede clear;
at times this effort has been at the cost of efficiency. In most cases
the inefficiency is easy to correct. However, as the coding is intended
as a gulde to implementation and nct as a strict set of {nstructions to
programmers, 1 leave this to the taste of the reader and user.

Several primitives have not been coded. These are the ones concerning
input and output of arrays. I feel that these will not be well done in
ALGOL and that the local environment wil' be the most important determinrant
of thelr format. At ISVD, these routines will be written using MAD and
the local systen previded 1/0 routines. In other systerms, {t ray well be
necessary to use asserbly language routfnes to code these primftives. Again,

the user will have to decide on his own r-thec: to implement these prinitives.

=105~

O

ERIC

Aruitoxt provided by Eic:

-106-

Any method is legitimate as long as it conforms to the specification of the
primitives.

One Beaton operatcr, SDG, has not been implemented a3 a primitive.

At the present time, it does not seem necessary to use this routine, On
the other unand, it is not a very difficult routine to code and may be
added at any time. There are several other minor routines which are not
central to Beaton's thesis, but which he includes. They may eventually
be included in the ISVD system merely for the sake of completeness,

The procedures I have added to ALGOL-TRAC are mainly housekeeping and
array indexing routines. In several places in the present code, a type of
4 will cause an error branch. It hdas been necessary to side-step this
difficulty. This 1s primarily the reason for 'getfa", "delete', and
"zbranch". The routines "index" and 'map"” are used to calculate linear
subscripts of elements of arrays. Finally, "convert', "expand", and
"setup' handle the conversion between BCD integers in arguments and machine
integers and vice verea. The routine ''delete" is the only one which
actually replaces a present routine. It was necessary to garbage clean
the "a" vector.

As noted above, there is a tacit assumption in ALGOL that all
arithmetic {s of unlimited range. This, of course, is not true on any
real michine., ALGOL also does not provide error recovery procedures for
machine conditions like overflow and underflow, It is for the user to
employ whatever mechanisms his machine provides to make the assumptions
atout arithmetic as true as possible and to effectively handle errors of
various sorts. Guides beyond this gentle warning in this area would be
futile.

11

THE CODED PRIMITIVES

The coding is in publication ALGOL, with the exception that the
Boolean connectives 'and', 'or', and 'not' are written cut in full. As
such, 1t has never been run on a machine. However, translations of por-
tions of it in other languages have been attempted and successful. The
code may have errors in detail, but 1l believe that overall structure of

the routines {s correct.

integer procedure convert(front,bsck);
integer front,back;
value front,back;
begin
integer 1,3,hold;
hold := 0
yi= 1
1f front = back
then begin
convert := 03
return;
comment In this case, the {nteger to be converted e
etther the null string or 18 an argwrent from the
neutral string of no length {i.e., nonexistent);

end
1f wifront + 1] = tharmi
or w(front + 1) = clirpl

then begln
j t= (if wifront + 1) = charmi then -1 else 1);
front := front + 1;
end Thie 1g the case when the Duteger in the rneutral

etrivg e proceded by a '+ or a '-' eign;

for 1 := front +1 step 1 until back

do hold := hold x 10 + w{i!;

convert i= j x hold;

end Thig procedure converts integers tn the reutral string into
their BCD representations. The hao of the BCD string fe
pointed tc by 'front' and the tail by 'back'. The value
cetumied by convert is the ruchine integer;

[
[
L]
o

procedure delete(i);
integer !;
value i
begin

-107-
O

ERIC 111

Aruitoxt provided by Eic:

-1C3-

end See 'delete' in Mooers' version of the interpreter;

integer procedure expand(pointer);
integer pointer;

value pointer;
begin
integer place,n,q,r;
place := wl;
n := abs(f{pointer]);
loop: if place = wn
then goto dia(2};
if n< 10
then begin
wlplace) = n;
goto done;
end Thie part of the procedure does the cxpangion
when the machine word will expand into a single
integer;
q := n/10;
r :=n-gq x 10;
w(place) := r;
place := place - 1;
n = q;
goto loop;
done: if sgn(f[pointer]) = -1
then begin
place := place - 1;
if place = wn
then goto dia[2);
w(place] := charmi;
end If the machine integer was a negative number, the
BCD repreegerntation te preceded by a '-' eign;
expand := place;
end Thie procedure produces the BCD representation of an ivn-
teger from the mackine representation. Roughly, it is the
inverse Lf convert. The value of the fimer.m ie a pointer
to the leftmust character of the BCD integer i the neutral
string. The integer riie from this pointer to the end of
the rewiral etring;

O

ERIC v o

s)

-109-

funaa: begin
integer {;
real temp;
getfa(2,5);
nq := rf;
getfa(3,5);
nqQ := rf;
getfa(4,5);
if f[np + 2] = 0 and flnq + 20 = £(rf + 2]
then begin
for 1 : 1 step 1 until f[uq + 2]
do if flnq + 5 +2 x 1] - flnq + & + 2 ~
f flrf + 5+ 2x 1] - flrf +4 42
then zbranch(5);
temp := a[np + 5);
for 1 := (4f f(nq + 2] = O then 5 else 6 + 2 x f[nq +])
step 1 until f(nq + 3)
do afrf + 1) := a[nq + 1] « temp;
end This portion adds the constant named by the first
argument (which was of zero dimension) to each element
of th3 second arguwment and storee the reeult in the
third argument.
else 1f f{nq + 2} = f[np + 2] and f(nq + 2] = flrf + 2]
then begin
for { := 1 step 1 until f[nq + 2]
do 1f flnp + 5+ 2 x 1) = flnp + 4 +

1)
x 1]

2 x 1]
flnqg+5+2x1] - flng+ 4+ 2x1]
or flnp+ 5+ 2 x1] - f[np+4&+ 2 x{]
FE[rE + 5+ 2x 1] - flrf + 4+ 2x1{]
then zbranch(5);
for £ = 6 + 2 x f[ny + 2] step 1 until f[np + 3]
do alrf + 1] := a[np + 1) + a[ng + 1]
end Thig portion checks to see if all the arguments
are of the eame dimension and each dimension has
the same range (althougl. rot necegearily the same
bounds) and if this ie so0, adds the first array
to the second, element by elerent, and gtores the
result in the third array. This ig an option
whick will not occir if the first half of the
progran kas been executed;
goto nullret;
end;

O

ERIC 115

Aruitoxt provided by Eic:

~110-

funad: begin

integer sub,uorl;

getfaf{2,0);

get (3);

sudb := convert(rp,rq);

if sub > £[rf + 2] or sub < 1

then goto nullret;

get(4d);

uorl := convert(rp,rq);

if wot (uorl = O or uorl = 1)

then goto nullret

else begin
rf = (4f f(rf + 2) = O raen rf + 2

elee rf + 4 + 2 x sub + uorl);

setup(rf,ct);
end;

goto unstack;

und This primitive returne ae a eigned BCD integer a dimension
bound value;

funac: begin

integer point;
real temp;

If flrf +2) = 0
then point := rf + 5
else begin
point := index{rf+3,3);
if point < 6 + 2 x f(rf +2] or point > f[rf + 3]
then goto nullret;
end;
temp := a{point];
flpoint] := a[point]);
setup(point,ct);
a(pofat] := temp;
goto unstack;
end This primitive converte an array element to an integer;

115

-111-

funae: begin
integer put,get;
getfa(2,0);
1f f(rf + 2] =0
then put .= 5
else begin
put := index(rf + 2,3);
1f put < 6 + 2 x f[rf 4+ 2] or put > t[rf +3}
then goto nullret;
end Put is the location of the element in which we
ghall ature the new value;
np := rf;
getfa(3 + f{np + 2],0);
if f(rf + 2] =0
then gel := 5
else begin
get := index(rf + 2,4 + f[np + 2]);
1f get < 6 + 2 x f{rf + 2] or get > f[rf + 3]
then gcto nullret;
end Cet i the location of the element to be fetched;
alnp + put] :~ afrf + get];
goto nullret;
end Thie primitive cets one array element to the value of
arviother;

funaf: begin

integer 1,j,templ;
getfazz,S);
np := rf,
getfa(3,5);
nq := rf;
getfa(4,5);
templ := f[np + 7] ~ f(np + 6];
i f(np + 2) = 2 and f(nq + 2) = 1 and frf + 2] =2
and templ = f(np + 9] - f[np + 8]
and templ = f{nq + 7] - f[nq + 6]
and templ = flrf + 7] - f[rf + 6]
and templ = firf + 9) - f{rf + 8)
then begin
for { i= 8 step 1 until f{nq + 3]
do if a{nq + 7 + 1] = 0.
then zbranch(5);
for { := 0 step 1 until templ
do for j := 0 step 1 until templ
do almap(rf,f,J)]) := alwmap(np,1,3)}/
(alnq + 7 + 1] « a[nq + 7 + 31}
comrent Thie half doce the creration vhewn tvo —atricse ani
a vector are turolvei., Notioe tie chelll ov the glle
lengths of the arrvays iwvoiv. i il on possibility o
a veeter element being zorc;
) end
LS
ERIC 115
1

s J

~-112-

else 1f flnp + 2] = 0 and f[nq ++ 2; = I and flrf + 2] = C
and a[ng + 5] ¥ O,
then a[rf + 5] := a{np + 5)/a[nq + 5)42
else zbranch(5);
corment This portion takes care of all the arguments
being scalors cr the standard errors;

goto nullret;
end 'fumaf' is Beaton routivne DMD;

funag: begin
integer 1,j,templ;
getfa(2,5);
nq := rf;
geLfa(3,5);
np = rf;
getfa(4,5);
templ := f(np + 7] - fnp + 6];
1f f{np + 2] = 2 and flnq + 2] = 1 and f[rf + 2] = 2
and templ = flnp + 9] - flap + 8]
ggg tenpl = f(nq + 7] - f[nq + 6]
and templ = f(rf + 7] - f[rf + 6]
and templ = f{rf + 9] - f[rf + 8]
then for if := 0 step 1 until tenmpl
do ggg J : O step 1 until templ
do a[map(rf,1,§)] := a[map(np.l.j)l x
afnq + 7 + 1] x afnq + 7 + }]
f[np +2) = 0 and f[nq + 2] = 0 and f(rf + 2] =0
en a[rf + 5] := a[np + 5] x afnq + T+ 512
else zbranch(5);
goto nullret;
end 'furag' s Beaton routive SCP. It has alrmost exaotly the
sare gitructure as 'funaf' (DMD), except that the vector
elemeite may te aero for this routine;

)
l»—-
)

O

ERIC 115

Aruitoxt provided by Eic:

funah:

funai:

~113-

begtn
integer 1,],k,temp;
real pivot;
getfa(2,5);
np := rf;
getfa(3,5);
get(4);
k := convert(rp,rq);
temp := f(np + 7} - f(np + 6];
if f(np + 2] = 2 and f[xf + 2]
and temp = f(np + 9] - f[np
and temp = f[rf + 7) - f[rf
and temp = f[rf + 9] - £[rf
and I < k and k < temp + 1
and a[map(np,k,k)) # O.
then begin
pivot := almap(np,k,k)];
foxr 1 := 0 step 1 until tewp
do for § := 0 step 1 until temp
v__fifkandj»‘k
then a[map(rf,1,§)] := a[map{(np,1,§)] -
(a[map(np,i,k)) - a[map(np,k,j)]/pivot
else 1{ 1 4 kand J =kor i1 =kaad §J # k
‘then a[map(rf,1,§)) := a[map(np,1.3)]/pivot
else a[map(rf,k,k)} := 1/pivot; °

++ 4+
OO0 N
ez

end
else zbranch(5);
oto nullret;
end ‘funah' 18 Beaton routine SWP, The coding te a straight-
fbxm‘uui tranalation of the algebra for the routine., Note
that the routine only cperates when the two argiumenis are
ratrices;

begin
integer temp,hold,i,],k;
real pivot,mult,temp2,chek;
nteger procedure place(x,y);
integer x,y;
valua x,¥y;
begin
place : temp x x + y + hold;
end There has to be a place to store an additional matrix
the sise of the one which g to be twrerted ani also
a vector as long as the eide of the arruu Thege will
be stored in the left hand end of the 'a' veetor, ani
thia routine will reference the element subeeripted
with 'z' and 'y' in this storage area;

-114-

getfa(2,5);
np := rf;
getfa(3,5);
ng := rf;
getfa(d,5);
temp := flnp + 7] - finp + 6];
if flnp + 2} = 2 and fnq + 2] = 2 and f[rf + 2} = 0
and temp = flnp + 9] - flnp + 8)
and temp = flnq + 7] - flnq + 6]
and temp = f[nq + 9] - fnq + 8)
and (temp + 1) x (temp + 2) < fl
5555 begln
comment The conditional checks to sece that there are
actually two square arrays and a scalar and
that there is enough free storage at the upper
end of the 'a' vector for the awriliary vector
arvd matrix needed in the iwnversion;
hold := f1 - (temp + 1) x (temp + 2) + 1;
for 1 := 0 step 1 until temp

do begin
for j := 0 step 1 until temp
do begin

a[map(nqg,1,j)) := 0.;
a{place(i,j)] := a[map(np,1,§)];
end;
a[map(nq,l 1)] = 1.;
end Thie little eection transsers the original rctrix
to auxiliary storage, so that it will not be hared
in the tnversion process and places the identity
matrix in the inverse;
afrf +5) := 1.3
for 1 := 0 step 1 until tenmp

(place(i,i)] # O,

goto loop
glge for § := 1 step 1 until temp

do if a[place(3,1)T ¥ O.
then begin
for k := 0 step 1 until temp
do begin

a{place(i,k)] := a[place(i, k)]
+ afplace(],k)];
a{rap(nq,i,k)] := a[map(nq,1,k)]
+ a[map(nq,j,k));
goto loop;
end This ecotion replacee a zero pives
clement with a nen-zero one;
goto fail;

O

ERIC 15

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

loop:

test:

-115-

pivot i= a[place(i,1)];

a[fl - 1] := pivoc;

a[rf + 5) := a[rf + 5] x pivot
for j H 0 step 1 until temp

f]
n

.

;l”
2 2
E

€ e i

= afplace(j,1)]/pivot;
k := 0 ytep 1 until temp
begin
BINP(NI»J'R)I := a{map(ng,j,k)]

- mult x a[map(nq,i,k)];
alplace(y,k)) := afplace(j,k)]

- mult x a[place(i,k)];
end;

end;
end This 3 whole begin block does the Gause elimination
for one row each time throwgh the for loop;
or 1 i= 0 step 1 until tenmp
0

- g
I

U
(<]

|

&

do for J : 0 step 1 until temp
do a{map(nq,1,§)) := a[map(no.l,j)]/a(fl - 1];
comment Thig normalizes the inverse by dividing each row

by the appropriate pivot element. This was rot
dore before o that emall pivot elements “»ould
not affeat the array too much before they had to;
for 1 := 0 steg 1 until temp
do for } step 1 un until temp
begin
afp ace(i) =04
for k := O step 1 until temp
do a[place(i §J] := a[rlace(i,j)] +
a(rap(np,1,k}] * a[map(ng,k,1}];
end Thig forms the product of the original array
and the approxirated trverse to cheok for size
of the restidual. The checb ig sirply an element
by elerent toleravice check
for { := 0 steg 1 unt{il temp
do fo 3 step 1 until terp
4o begin
chek = (4f 1 = j then 1. else 0)
1f abs(chek - a[place(i,j)]> .
then goto fixup;
end If this test succeeds on all the elements then
*Fe routive ie finishked. Other. zse, the inerse
{e gent to an iterative routive to trprove it;
goto nullret;

-116~

fixup: for { := 0 step 1 until temp
do for § := 0 step "1 un until temp
do begin

chek := (1f { = j then 2. els: 0.)

a[place(i 13)) := chek - alplace(i,i)]);

end This formg the matrix 2I - A*X;
or { = 0 step 1 until temp

do begin

for § := 0 step 1 until temp

do a[fl - J) := a[map(nq,1,])];

for J : O step 1 until temp

do begin
a[map(nq,1,j)) := 0.;
for k := 0 step 1 until temp
do alm ap(na.1,1)) T= a[maplng.1,1)]

+ a[fl - 1] x a[place(k,j)];

end;

end Thig little section has stored the i-th rov of
inverse tn the auxiliary vector ana then formed
a new row of the inverse by multiplying the
stored row by the matrix we calculated above;

goto test;
fail: alrf + 5] := 0.;

for 4 := O step 1 until temp
for § := 0 step 1 until temp
do a[map(nq. 3] e 045

zbranch(5);
end Thig ends the succegsful half of the eonditional;
zbranch(s),
'funai ' caloulates the inverge and determinant of a gtven
ratrix by the Gauss elimination riethod. If the residual
after multiplication of the (rtgznal ratrix by the euwpposed
trnverse 18 too large, the inverse is improved by the applica-
tion of the zterattve formula

= XY2r - A*X),
wvhere 4 is t#e gtiven matrix, X 18 the atterpted iwveree ani
Y 16 an irproved estimate. See Calingaert (1965} for the
details;

l“]

[
[
wn
o

o
=
o

|

O

ERIC 127

Aruitoxt provided by Eic:

~-117-

funaj: begin

integer {,temp;

getfa(2,4);

np := rf;

getfa(3,4);

temp := finp + 7) - f(np + 6];

if f{np +2) = 2 and flrf + 2] = 1
and temp = f[np + 9} - f(np + 8]
and temp = f[rf + 7] - f[rf + 6]

for 1 := 0 step 1 until temp
do if al(map(np,i,1)] < O,
then zbranch(4);
for 1 := 0 step 1 until temp
do a [rf + 7 + 1) := sqrt(almap(np,1,1)]);

else z:_f(np +2) =0 and flrf + 2] = 0 and a[np + 5) ¢ O.
hen alrf + 5) i= sqrc(alnp + 5))
else zbranch(4);
oto nullret;
end ‘'funad! {8 Beaton routine LVEC. The only intereeting
point te the check so that square roots of regative
numbere will not be taken;

funak: begln

integer 1,5,k;

getfa{2,5);

np = rf;

gctfa(J,S);

nq := rf;

getfa(4,5);

if f{np + 2) = 1 and flnq + 2} =1 and f(rf + 2] = 1

and f[rf + 7] - Sf[rf + 6] 41
=(flnp + 7] - flnp + 6) + 1)=(f(nq + ?] - flnq + 6] + 1)

then begin

for 1 := 8 steg 1 until ffnp ¢ 3}
do for }j 8 step 1 until f(nq + 3)

k] := a[np + 1] ~ a{nq + J);
+ .

end
else zbranch(5);
goto nullret;
end 'f «*zz' 18 Featom rewtine DIFFRD, Netice hew the index
' {s haidled, It conforrs precicely to the algetraie
(e,znztxun of tke reutine;

ERIC

Aruitoxt provided by Eic:

funam:

O

ERIC

Aruitoxt provided by Eic:

-118-

begin

integer 1,j,k,templ,temp.,temp3,temph;
getfa(2,5);

ap := rf;

getfa(3,5);

nq := rf;

getfa(4,5);

if flap + 2] = 0 and f(nq + 2] = frf + 2]

then begin
for 1 : 1 step 1 until f[nq + 21

4
#f(rf +5+2x 1) - fef +
then zbranch(5);
£g£ 1 := (4f f[nq + 2] = O then 5 else 6 + 2 x f[nq + 2])
1 until f(nq + 3]
g_ tf + 1] := a[nq + 1] + a[np + 5];
end
flnp + 2] = 1 and flnq + 2] = 1 and f{rf + 2] =1
and f[np + 3] = flnq + 3)
then begin
alrf +5) =0,;
for 1 := 8 step 1 until f(np + 3]
do a[rf + 5) := a[cf +] + alnp + 1] x s{nq + 1];
end
else if f(nq + 2} = 2 and flnq + 2] = 2 and f(rf + 2] = 2
and f{nq + 7] ~ t[nq + 6] = flnp + 9] - finp
and flnp + 7] - fnp + 6) = frf + 7] - f(rf
and flnq + 9) - fnq + 8) = f[rf + 9] - f[rf
then begin
templ := f(rq + 9] - [nq + 8]
temp2 := f{np + 7] - fi{np + 6}
temp3 := fnp + 9) - f(np + 8]
for 1 := 0 step 1 until templ
do for § := 0 step 1 until temp?
do begin
temp3 := map(rf,i,§);
a{tenp3) := 0.
for k := 0 step 1 until tempé
do a(temp3] := a[temp3) +
a[map(np,1,k)]*a[map(nq,k,J));
end;

©
("]
o
lv--

+ + +
o o o

end
else zbranch(5);

goto nullret;

end ‘N’ fs the array rddt ation routive. The first
gotion rudtiplies any ari . element by elerunt by o
sexlar, the ecoond eeoticon rultiplies tuwo veoters and
P‘Sulfﬂ in a ecalar, and the final geotion mudtiplice
twe matrices. There are checks on the gize ¢f euwleoripte
throwghout th. rrogram. The coling is pretiy ruh a
stra»ght travgaription of the algorith~ for array mdlti-
rlteation,

funas:

next:
found:

none:

ERIC

Aruitoxt provided by Eic:

~119-

begin
integer dim,length,size,n,i,j,prod;
getf (2,next);
goto found;
getfa(2,-1);
if frf] =1
then goto none;
delete(xf);
np := rp;
nq = rq;
get(3);
dim := convert{rp,rq);
if dim + 0
then length := 6 + rq -~ rp
else begin
if fo - 2 x dim < 1
then goto diag(l];

size = 1;
for n := 1 step 2 until 2 » dim
do begin

get(n + 3);
f(fn - n] := convert(rp,rq);
get{n + 4);
f(fn - n + 1] := convert(rp,rq),
size := size x (f{fn - n} - f{fn - n + 1] + 1);
end The amooit of storage which vieeds to be reserved
Jor an array ig a furiction of the dimension townds
for that array and the dimension. At this poont
the dirension bounds are caleulated and stored
trrediately to the left of the first form in
storage. If there ic rot enough room for all of
them, there will vot be rcom for the array. Even-
tually, they will te roved into their proper place
in the form;
length := & + 2 x dim + size + nq - np;
end ‘lewgth' is the astual length of the form in cells of
storage. The rext statement is a test to check if
there 13 room for the array in form etorage;

O

ERIC

Aruitoxt provided by Eic:

-120-

if fn - length < 1

then

goto diag(1];

Tf := fn;
fn := fn - length;

f(fn]
f(fn
f(fn
f(fn
f(fn

= 4y
+ 1] := hash(w,np,nq);
+ 3] := dim;
+ 4] := (4f dim = O then 5 else 5 + 2 x dim + size);
+ 5] = length - 1;

Lf_dim =0

then
else

for 1

do £
BOKO

end

a[fn + 6] := 0,
begin
flfn + 6] := 6 + 2 x dim;
for { := 2 x dim step -1 until 1
@_f[fn+6+1) = £(rf ¥+ 1 - 2 x dim);
commant This last statement moves the dimension bounds
from their position at the end of the form into
the place they will permanently occupy. In the
process, it reverses their order, so the sub-
seript bownds on the lowest dimenezon come first
in the form. This organiaation 18 required for
other rcutines;
for 4 := 1 step 1 until dim
do begin
prod := 1;
for §J := 1 step 1 until dim - {
do prod := prod x (f{fn + 6 + 2 x j]
- flfn +5 4+ 2 x J] +1);
flfn + 6] := f(fn + 6] - prod x
(f{fn + 7 + 2 x (dim - 1)) - 1);
end Tiis short gsegment corputes the base value of
array. The next several staterents set the vhole
array to Beros;
for 4 := 6 + 2 x dim + 1 step 1 until f(fn + 4]
do a[fn + {1 1= 0.;
end;
t= 1 gtep 1 until nq - np
f(fn + 4 4+ 1]) 1= wlnp + 1];
nullret;
The whole routine is taken esomewhat from Mocers' 'ivisert'
routing. It tranisforrmg a TRAC array dJdefinition into a
requegt for storage space. Notice that there are two kin
of arrays, those with zero direneion and those with ncw- zero
dimengion and that they ruet be treated separately;

121

-121-

funat: begin
integer 1,3;

getfa(2,4);
np := rf;
getfa(3,4);
1€ t(np + 2] = 2 and f(rf + 2] = 2
and f[rf + 9] - “f(rf +8) = €f(np : 7] - €[np + 6]
and £(rf +7) ~ £(rf + 6] = f[np + 9] - f[np + 8]
then for 1 := O step 1 until flnp + 7] - flnp + 6]
do for § := O step 1 unl until f(np + 9] - f(np + 8)
do a[map(rf 3,1)] t= a(map(np,1,§)];
else zbranch(4);
goto nullret;
end 'fungt' {8 the array transposition routine. The coding
t8 obvious;

funav: begin
getfa(2,0);
setup(rf + 2,ct);
goto unstack;
end 'finav' ig the dimension value funrtion. Note that it
returns a value;

funsa: ‘tegin
getfa(2,4);
np = rf;
getfa(3,4);
if f{np + 2) = 0 and f[rf + 2] = O
then a[zf + 5) := abs(a[np + 5));
else zbranch(k),
goto nullret;
end 'funga' is the scalar absolute value primitive. It hae
no complications.

funse:

funsl:

funsp:

-122-

begin

getfa(2,4);

np = rf;

petfa(3,4);

if f{np + 2] = 0 and f(rf + 2] = 0

then afrf + 5) := exp(alnp + 5])

else zbranch(4);

goto nullret;

end 'funes' is the scalar expomential function;

begin

getfa(2,4);

np i= rf;

getfa(3,4);

1f flnp + 2] = 0 and f[rf + 2} = 0 and a[np + 5] > 0.
then a{rf + 5] := ln(a(np + 5])

else zbranch(4);

goto nullret;

end 'fungl’ i{e the scalar log function;

begin

getfa(2,5);

np := rf}

getfa(3,5);

ng = rf;

getfala,5);

if fluap + 2) = 0 and f{rf + 2) = 0 and f{nq + 2] = 0

and afnp + 5] > 0.

then a(rf + 5) := alnp +5)talnq + 5]

else if alnp + 5] = 0.
then a(rf + 5] := 0.
else zbranch(5);

goto nullret;

end 'funsp' is the scalar power fioiction. At preseut it
will only caleulate the pover of a positive wumber,
but thie may be changed;

-123-

procedure getfa(n,m);

integer n,m;

value n,m;
begin
if atb + n > atl
then zbranch(m);
get(n);
find(rp,rq,rf,nullret);
1f flrf] 4 &
then zbranch(m);
end Thig is the array version of 'getf';

integer procedure index(dimpoint,firstarg);
integer dimpoint,firstarg;
value dimpoint,firstarg;
begin
integer hold,prod,i,]j,base;
base := dimpoint + 3;
if f[dimpoint] < 1
then goto nullret;
hold := f(base];
for 1 := 1 step 1 until fldimpoint]
do begin
prod := 1;
for § := 1 step 1 until f[dimpoint] - 1
do prod := prod » (f(base + 2 x §) - f[base + 2 v § - 1] + 1);
get (firstarg + f{dinmpoint] - 1);
hold := hold + prod x (convert(rp,rq) - 1);
end;
irdex := hold;
end This routine caleulates the linear subseript of an array
elgrent Wign the array subsoripte are D, BCD iIn the neutral
string. 'dimpoint' 13 a pointer to the dimension ¢f the
array which ie referenced and 'firstarg' 1s the nuler of
the first array ssbsoript in the argurent etack for the
present fuwiction being evaiuated;

El{llC 127

Aruitoxt provided by Eic:

-124-

integer procedure map(point,1,]);
Integer point,i,j;
value peint,1,j;
begin
map := (f[point + 7] - f[point + 6] x (f[point + 8] + 1 - 1)
+ flpoint + 6] + J - 1 + flpoint + 5] + point;
end This function caleculates the linecar subseript of a matrix
element when supplied with a pointer to the head of the
matrix and two subseripts, The subeeripts must be normalized
to lie between zero and the range of the dimension which they
subseript;

procedure setup(pointer,aorn);
integer pointer,aorn;
value pointer,aorn;

begin

integer start,i;
if aorn = 0

then for i := expand{pointer) step 1 until wl
do begin
wliwn] := w[i];
wn = wn + 1;
end
else if aorn =1
then begin
start := expand{(pointer);
if f1 - wl -1 + start < 1
then goto diag[3];
comment This means thal) the active string is not long
enough to handle the string;
tor 1 := wl step -1 until start
d

kegin
fl := f1 - 13
flf1) := w(i];
end;

end

else zbranch(0);

end 'setup’ returne integers from machine language format to ETD
in either the reuiral or active string, depending on the valuc
of 'acrm'. 'pointer' refers to the 'f' storage vector;

ERIC |

Aruitoxt provided by Eic:

i
(O

-125-

procedure zbranch(n);
integer n;
value n;

goto argret;
end If this branch is token, then the n-th argument in the
neutral stack <o returned as a value;

else if n = -1
then goto none
else goto nullret;

end 7The last two branchee provide, first, a special branch for
the ‘delete’ routine, and seeond, a branch to 'mullret’,
This routine is intended for use in situations where the
nwwrber deseribing the type of branch maoy need to be calou-
lated;

O

ERIC 125

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

APFLICATIONS

The easiest application is a routine to transform curvilinear models
into liunear onas. If observaticns of n predictor variables and m predicted
variables are taken, then a curvilinear model for the dependence is function

f of the form
f(<x1,X2,---,Xn>) = <y1ly-zl"'!ym>

where the vector y is not a linear function of the vector x. It is possible
to write, by inspection of the function f, a set of functions 8y vhere {1

ranges from 1 to p, and where p is greater than or equal to n, such that a
!

new set of predictor variables Xy

are generated by

gi(<x1,x2,...,xn>) e xil

and a function f' such that

£'(<x1',x2',...,xp'>\ S ST PYRRRT M f(<x1,x2,...,xn>)

and f' is linear. The functions g4 are nct canonically determined by the
structure of f, but anybodv using a curvilinear mcdel will know enough to
determine them in a proper manner and they and the function f' always exist.
It is relatively simple to design a TRAC procedure which, given the trans-
formation functicns g4 in some standard notaticn and the name of a data
matrix, will parse the functions and produce a transformed data matrix of
the proper dimensions. The scirlar absolute value, exponertial, logarithm,
and power functions were included in the package tc¢ make Lhese trancsfor-
mations possible.

Another obvious application is the construction of a statistical
desk calculator. This calculator will include built-up TRAC procedures
for the standard statistics and the opportunity to use the primitives in
TRAC for extraordinary problems. There will be elaborate error recovery
and detection routines and materials designed for the g uidance of beginning
users. This calculator will te relatively slow in comparison to hand-
tailored routines for each individual statistic, but this will be made up

by the flexibility of the package and the chance for the user to invesligate

-126-

1y?

-127-

the statlstical behavior of the data he is using. Beaton has suggested that
this kind of ability is the next step statistics must take in its growth as

a research tool,

o

ERIC 181

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

CONCLUSION

This paper has shown that the addition c¢f statisvical powers to TRAC
is feasible, and, once the design problem is solved, fairly easy. The
problem of combining these operators in usable ways is left tou the statis-
tician, although that is fairly easy to do also, once Beatcn (1964) is read
and understood. But there is more to the problem than this summary suggests.

In the first place, the operators which have to do only with the man-
ipuiation of arrays have been arranged so that they may be extended, and in
some cases already aré, to arrays of higher dimension than two. The array
storage mechaniswms and the input and sutput routines are also applicable
to the arrays of higher dimension. 1t is my hope that these all nay be com-
bined into a matrix and tensor calculator, which, using the textual nature
of TRAC, will be able to manipulate these objects symbolically, and which,
using my primitives and extensions of tham, will be able to translate these
symbolic manipulations in actual arithmetic calculation. TRAC is ideal for
interpretive work with textual objects and this is precisely the kind of
work that needs to be done i1 the newly opened field of formal manipulation
by machire of algebraic structures. Although the work will not go on at
ISVD, T would hope that others could take it up.

A more important point is the transient nature of this solution to
ISVD problems in statisticc. Earlfer, it was menticned that no primitive
in TRAC relies on any other. Thus, although these primitives work for 1ISVD,
there is no reason for tnen to work for anybody else and there is no reason
for anyone else to use them. but there is a reasoa for their presentation.
As others need statistical powers ir TRAC, they may add the whole package,

a part of it, or only take the suggestions here as a starting point for
their own solution. And this {s the power of TRAC. [ach interpreter may

be tailored to the needs of the situsticn in which {t is to be used. This
has been on the surface a study of a particular problem for ISVD, but more
deeply, it is an essay on the flexibility cf TRAC. It is my hope that it
will serve sore as an example in the philosophy of progranming languages and
the practical application of that philosophy ttin as a strict answer to a

set problem,

~-128-

142

LR

BIBLIOGRAPHY

Arden, B.; Galle.; and Graham. (1966) The Michigan Algorithm Decoder
(The MAD Manual). Revised by E. Organick. Ann Arbor, Michigan:
University of Michigan Press.

Beaton, A. (1964) The Usz of Special Matrix Operators in Statistical
Calculus. Research Bulletin RB-(4-51. Princeton, New Jersey:
Educational Testing Service.

. (1966) "“Considerations in the Constru~tion of a Computer
Language for Data Analysis.' Princeton, New Jersey: FEducational
Testing Service. {unpublished}

Hutchinson, T. (1967) Internal Memoranda on the Beaton Subroutires.
Camtridge, Massachusetts: Information System for Vocational De-
cisions. [unpublished]

LaBrie, Kh. (1966) ''The Feasibiiity of Providing Statistical Power to a
Text Handling Langiage Used in a Computer Based Educational System.'
Submitted to Harvard Graduate School of Education, Course B-60.

Mooers, C. (1966) '“TRAC, A Procedure-Describing Language for the Re-
active Typewriter." Communications of the ACM. 9,3.

; and Deutsch, P. (1965) '"TRAC, A Procedure Handling Language."
Proceedings of the ACM - 20th Annucl Conference. Cleveland, Ohio:
229-246,

. {1966 "TRAC in ALGOL, Level Zero Standard Processor (Draft)."
Combridge, Massachusetts: Rockford Research Institute, Inc. [un-
published]

Tiedeman, David V. (1965) "A Proposal for an Informatfon System for Vo-
cational Decisions.' Submitted to the U.S. Office of Education by
the larvard Graduate School of Educatiom,.

Calingaert, C. (1965) Frinciples of Computation. Reading, Massachusetts:
Addison-Wasley.

ERIC 125

Aruitoxt provided by Eic:

APPENDIX G

Flow Charts

EK?C 144

TRA

Enter here after
LOGOUT to initislize
for next user

EnteT here at the
completion of &
acript wtep
(Chart I1)

CRI

.El{l‘c

Aruitoxt provided by Eic:

/TRAC
discoverad by
Recognizer

c

Call HASM to set
up FPB region and
init{alize tadles

Inftdalize yser
storage area

T 2.

Set script to]
LOGIN

INL '

Set TRAC regfsters
to neutral

student type
TRAC sratecent at
KEYBOAFL? Or was
there an

wror?

Is FP3
for script already
set up?

Call HASM

CHART 1

Session AND STEP INITIALIZATION

Set up FPB
from contents
of STEP

for next step

Sst STEP to
"41" for contfnue

Is it
& TRAC
statezent?

no

EASY

Branch according to
statezent type

+ ’

DECOMP GOTC KEYBOARD

.ih\iii::flNl’:::"—“"’—‘

Enter here
1f student types TRAC
statezeat at Keybeard

CMPCT2

Move Btep into
active #tack

=" INTERP (Chazt 11)

-131-

TRAC statement
encountered either
in script step or

from console end moved
into Active stack
(Chart Il and)

CHART 1

TRAC MatN INTERPRETER

INTERP

Move
charasters in
active stank?

Enter here to INI (Chart 1)

look at next active

chatv.,
ALP
Is next Scan to matching
X ") storing inrerventing| .
d’:;,’,s!" characters in neutral [% INTERP
’ steck
Is next
‘h:;:‘?‘" ARP (Chart 11D)
ACL
Are next Mark beginning
2 chu:cteu of active function ——— INTERP
0" in s-stack
Ve
ACL2 -
yes Mark beg{nning
of neutral function d 1%
in s-stack INTERP
ALM
yes Mark end of srgument/
— beglnning of argument ———— INTERP
in s-ateck
Put character in
aeutral stack
INTERD
-132-
O

ERIC

125
‘
J

Tha fiua) paren
of & TRAC function
le faund. It’s

argumaats are in the
neutral staeck pointed
up by s-stack.

Mark end of last
argument in
g-gtack

Set WS to RWN to mark
end of function

L

Locate ARGl and
determine {ts nature

1s 1t
@ prinitiva?

7

CHART 11

TRANSFER TO AND FRoM A TRAC FUNCTION

¥ove ' tring 1into
nevtrel stack at
WS marking end

with RWN

’/’Il

ft in forma

| rax

Execute the function

MULRIN RTN

Delete notas in
s-stav< for this
function

UNSTAX L

Restere nites on
defarred function
to continue scen

3

INTERP
(Chart 11}

|

Sat RRP to WS and
RRQ to RWN

¢

ARGRTN

Is 1t an
active function?
(CTel)

Mova value from
KR} to RRQ §nto
activae stack with
end at RPN

UNSTAK

O

ERIC

Aruitoxt provided by Eic:

 d
GOz Does Transfer
value begin contents INI
to SIEP (Chart 1)

vith tj,/’

| _+ Sat CT'l—}"ARGRTN

Move value from RRP-]
to RRQ over arguments
for ‘his functicen
in neutral stack.
set RWN to last
character.

1

UNSTAK

Get pointars to
2 _arguzent

